

1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

1.2.1.5

1.2.2

1.2.2.1

1.2.2.2

1.2.2.3

1.2.3

1.2.3.1

1.2.3.2

1.2.3.3

1.3

1.3.1

1.3.1.1

1.3.1.2

1.3.1.3

1.3.1.4

1.3.2

1.3.2.1

1.3.2.2

1.3.2.3

1.3.3

1.3.3.1

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.3

1.4.1.4

1.4.2

1.4.2.1

1.4.2.2

1.4.2.3

1.5

Table	of	Contents
Introduction

Unit	1.	Get	started

Lesson	1:	Build	your	first	app

1.0:	Introduction	to	Android

1.1:	Create	Your	First	Android	App

1.2:	Layouts,	Views	and	Resources

1.3:	Text	and	Scrolling	Views

1.4:	Resources	to	Help	You	Learn

Lesson	2:	Activities

2.1:	Understanding	Activities	and	Intents

2.2:	The	Activity	Lifecycle	and	Managing	State

2.3:	Activities	and	Implicit	Intents

Lesson	3:	Testing,	debugging,	and	using	support	libraries

3.1:	The	Android	Studio	Debugger

3.2:	Testing	your	App

3.3:	The	Android	Support	Library

Unit	2.	User	experience

Lesson	4:	User	interaction

4.1:	User	Input	Controls

4.2:	Menus

4.3:	Screen	Navigation

4.4:	RecyclerView

Lesson	5:	Delightful	user	experience

5.1:	Drawables,	Styles,	and	Themes

5.2:	Material	Design

5.3:	Providing	Resources	for	Adaptive	Layouts

Lesson	6:	Testing	your	UI

6.1:	Testing	the	User	Interface

Unit	3.	Working	in	the	background

Lesson	7:	Background	Tasks

7.1:	AsyncTask	and	AsyncTaskLoader

7.2:	Connect	to	the	Internet

7.3:	Broadcast	Receivers

7.4:	Services

Lesson	8:	Triggering,	scheduling	and	optimizing	background	tasks

8.1:	Notifications

8.2:	Scheduling	Alarms

8.3:	Transferring	Data	Efficiently

Unit	4.	All	about	data

Table	of	Contents

2

1.5.1

1.5.1.1

1.5.1.2

1.5.1.3

1.5.2

1.5.2.1

1.5.2.2

1.5.3

1.5.3.1

1.5.4

1.5.4.1

1.6

1.6.1

1.6.1.1

1.6.2

1.6.2.1

1.6.3

1.6.3.1

Lesson	9:	Preferences	and	Settings

9.0:	Storing	Data

9.1:	Shared	Preferences

9.2:	App	Settings

Lesson	10:	Storing	data	using	SQLite

10.0:	SQLite	Primer

10.1:	SQLite	Database

Lesson	11:	Sharing	data	with	content	providers

11.1:	Share	Data	Through	Content	Providers

Lesson	12:	Loading	data	using	loaders

12.1:	Loaders

Unit	5.	What's	Next?

Lesson	13:	Permissions,	Performance	and	Security

13.1:	Permissions,	Performance	and	Security

Lesson	14:	Firebase	and	AdMob

14.1:	Firebase	and	AdMob

Lesson	15:	Publish!

15.1:	Publish!

Table	of	Contents

3

Android	Developer	Fundamentals	Course	–	Concepts
Android	Developer	Fundamentals	is	a	training	course	created	by	the	Google	Developer	Training	team.	You	learn	basic
Android	programming	concepts	and	build	a	variety	of	apps,	starting	with	Hello	World	and	working	your	way	up	to	apps	that
use	content	providers	and	loaders.

Android	Developer	Fundamentals	prepares	you	to	take	the	exam	for	the	Associate	Android	Developer	Certification.

This	course	is	intended	to	be	taught	in	a	classroom,	but	all	the	materials	are	online,	so	if	you	like	to	learn	by	yourself,	go
ahead!

Prerequisites
Android	Developer	Fundamentals	is	intended	for	new	and	experienced	developers	who	already	have	Java	programming
experience	and	now	want	to	learn	to	build	Android	apps.

Course	materials
The	course	materials	include:

This	concept	reference,	which	teaches	subjects	you	need	to	learn	to	complete	the	exercises	in	the	practical	workbook.
Some	lessons	are	purely	conceptual	and	do	not	have	an	accompanying	practical.
The	practical	workbook:	Android	Developer	Fundamentals	Course—Practicals
Slide	decks	(for	optional	use	by	instructors)
Videos	of	lectures	(for	reference	by	instructors	and	students)

What	topics	are	covered?

Android	Developer	Fundamentals	includes	five	teaching	units,	which	are	described	in	What	does	the	course	cover?

Developed	by	the	Google	Developer	Training	Team

Introduction

4

https://developers.google.com/training/courses/android-fundamentals
https://www.udacity.com/google-certifications
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://drive.google.com/drive/u/0/folders/0B5Kg0X0yIQ1Pbk5yVGdsSFFjR28
https://www.youtube.com/playlist?list=PLlyCyjh2pUe9wv-hU4my-Nen_SvXIzxGB
https://developers.google.com/training/courses/android-fundamentals#what_does_the_course_cover

Last	updated:	February	2017	

This	work	is	licensed	under	a	Creative	Commons	Attribution-Non	Commercial	4.0	International	License

Introduction

5

1.0:	Introduction	to	Android
Contents:

What	is	Android?
Why	develop	apps	for	Android?
Android	versions
The	challenges	of	Android	app	development
Learn	more

What	is	Android?
Android	is	an	operating	system	and	programming	platform	developed	by	Google	for	smartphones	and	other	mobile	devices
(such	as	tablets).	It	can	run	on	many	different	devices	from	many	different	manufacturers.	Android	includes	a	software
development	kit	for	writing	original	code	and	assembling	software	modules	to	create	apps	for	Android	users.	It	also
provides	a	marketplace	to	distribute	apps.	All	together,	Android	represents	an	ecosystem	for	mobile	apps.	

Why	develop	apps	for	Android?
Apps	are	developed	for	a	variety	of	reasons:	addressing	business	requirements,	building	new	services,	creating	new
businesses,	and	providing	games	and	other	types	of	content	for	users.	Developers	choose	to	develop	for	Android	in	order
to	reach	the	majority	of	mobile	device	users.

Most	popular	platform	for	mobile	apps

As	the	world's	most	popular	mobile	platform,	Android	powers	hundreds	of	millions	of	mobile	devices	in	more	than	190
countries	around	the	world.	It	has	the	largest	installed	base	of	any	mobile	platform	and	is	still	growing	fast.	Every	day
another	million	users	power	up	their	Android	devices	for	the	first	time	and	start	looking	for	apps,	games,	and	other	digital

1.0:	Introduction	to	Android

6

content.	

Best	experience	for	app	users

Android	provides	a	touch-screen	user	interface	(UI)	for	interacting	with	apps.	Android's	user	interface	is	mainly	based	on
direct	manipulation,	using	touch	gestures	such	as	swiping,	tapping	and	pinching	to	manipulate	on-screen	objects.	In
addition	to	the	keyboard,	there’s	a	customizable	virtual	keyboard	for	text	input.	Android	can	also	support	game	controllers
and	full-size	physical	keyboards	connected	by	Bluetooth	or	USB.	

The	Android	home	screen	can	contain	several	pages	of	app	icons,	which	launch	the	associated	apps,	and	widgets,	which
display	live,	auto-updating	content	such	as	the	weather,	the	user's	email	inbox	or	a	news	ticker.	Android	can	also	play
multimedia	content	such	as	music,	animation,	and	video.	The	figure	above	shows	app	icons	on	the	home	screen	(left),
playing	music	(center),	and	displaying	widgets	(right).	Along	the	top	of	the	screen	is	a	status	bar,	showing	information	about
the	device	and	its	connectivity.	The	Android	home	screen	may	be	made	up	of	several	pages,	between	which	the	user	can
swipe	back	and	forth.

Android	is	designed	to	provide	immediate	response	to	user	input.	Besides	a	fluid	touch	interface,	the	vibration	capabilities
of	an	Android	device	can	provide	haptic	feedback.	Internal	hardware	such	as	accelerometers,	gyroscopes	and	proximity
sensors,	are	used	by	many	apps	to	respond	to	additional	user	actions.	These	sensors	can	detect	rotation	of	the	screen
from	portrait	to	landscape	for	a	wider	view	or	it	can	allow	the	user	to	steer	a	virtual	vehicle	in	a	racing	game	by	rotating	the
device	as	if	it	were	a	steering	wheel.

1.0:	Introduction	to	Android

7

The	Android	platform,	based	on	the	Linux	kernel,	is	designed	primarily	for	touchscreen	mobile	devices	such	as
smartphones	and	tablets.	Since	Android	devices	are	usually	battery-powered,	Android	is	designed	to	manage	processes	to
keep	power	consumption	at	a	minimum,	providing	longer	battery	use.

Easy	to	develop	apps

Use	the	Android	software	development	kit	(SDK)	to	develop	apps	that	take	advantage	of	the	Android	operating	system	and
UI.	The	SDK	includes	a	comprehensive	set	of	development	tools	including	a	debugger,	software	libraries	of	prewritten
code,	a	device	emulator,	documentation,	sample	code,	and	tutorials.	Use	these	tools	to	create	apps	that	look	great	and
take	advantage	of	the	hardware	capabilities	available	on	each	device.

To	develop	apps	using	the	SDK,	use	the	Java	programming	language	for	developing	the	app	and	Extensible	Markup
Language	(XML)	files	for	describing	data	resources.	By	writing	the	code	in	Java	and	creating	a	single	app	binary,	you	will
have	an	app	that	can	run	on	both	phone	and	tablet	form	factors.	You	can	declare	your	UI	in	lightweight	sets	of	XML
resources,	one	set	for	parts	of	the	UI	that	are	common	to	all	form	factors,	and	other	sets	for	features	specific	to	phones	or
tablets.	At	runtime,	Android	applies	the	correct	resource	sets	based	on	its	screen	size,	density,	locale,	and	so	on.

To	help	you	develop	your	apps	efficiently,	Google	offers	a	full	Java	Integrated	Development	Environment	(IDE)	called
Android	Studio,	with	advanced	features	for	developing,	debugging,	and	packaging	Android	apps.	Using	Android	Studio,	you
can	develop	on	any	available	Android	device,	or	create	virtual	devices	that	emulate	any	hardware	configuration.

Android	provides	a	rich	development	architecture.	You	don’t	need	to	know	much	about	the	components	of	this	architecture,
but	it	is	useful	to	know	what	is	available	in	the	system	for	your	app	to	use.	The	following	diagram	shows	the	major
components	of	the	Android	stack	—	the	operating	system	and	development	architecture.	

In	the	figure	above:

1.	 Apps:	Your	apps	live	at	this	level,	along	with	core	system	apps	for	email,	SMS	messaging,	calendars,	Internet
browsing,	or	contacts.

2.	 Java	API	Framework:	All	features	of	Android	are	available	to	developers	through	application	programming	interfaces
(APIs)	written	in	the	Java	language.	You	don't	need	to	know	the	details	of	all	of	the	APIs	to	learn	how	to	develop
Android	apps,	but	you	can	learn	more	about	the	following	APIs,	which	are	useful	for	creating	apps:

View	System	used	to	build	an	app's	UI,	including	lists,	buttons,	and	menus.
Resource	Manager	used	to	access	to	non-code	resources	such	as	localized	strings,	graphics,	and	layout	files.
Notification	Manager	used	to	display	custom	alerts	in	the	status	bar.
Activity	Manager	that	manages	the	lifecycle	of	apps.
Content	Providers	that	enable	apps	to	access	data	from	other	apps.

1.0:	Introduction	to	Android

8

https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/XML
https://developer.android.com/studio/intro/index.html
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/resources/overview.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/topics/providers/content-providers.html

All	framework	APIs	that	Android	system	apps	use.
3.	 Libraries	and	Android	Runtime:	Each	app	runs	in	its	own	process	and	with	its	own	instance	of	the	Android	Runtime,

which	enables	multiple	virtual	machines	on	low-memory	devices.	Android	also	includes	a	set	of	core	runtime	libraries
that	provide	most	of	the	functionality	of	the	Java	programming	language,	including	some	Java	8	language	features	that
the	Java	API	framework	uses.	Many	core	Android	system	components	and	services	are	built	from	native	code	that
require	native	libraries	written	in	C	and	C++.	These	native	libraries	are	available	to	apps	through	the	Java	API
framework.

4.	 Hardware	Abstraction	Layer	(HAL):	This	layer	provides	standard	interfaces	that	expose	device	hardware	capabilities
to	the	higher-level	Java	API	framework.	The	HAL	consists	of	multiple	library	modules,	each	of	which	implements	an
interface	for	a	specific	type	of	hardware	component,	such	as	the	camera	or	bluetooth	module.

5.	 Linux	Kernel:	The	foundation	of	the	Android	platform	is	the	Linux	kernel.	The	above	layers	rely	on	the	Linux	kernel	for
underlying	functionalities	such	as	threading	and	low-level	memory	management.	Using	a	Linux	kernel	enables	Android
to	take	advantage	of	key	security	features	and	allows	device	manufacturers	to	develop	hardware	drivers	for	a	well-
known	kernel.

Many	distribution	options

You	can	distribute	your	Android	app	in	many	different	ways:	email,	website	or	an	app	marketplace	such	as	Google	Play.
Android	users	download	billions	of	apps	and	games	from	the	Google	Play	store	each	month	(shown	in	the	figure	below).
Google	Play	is	a	digital	distribution	service,	operated	and	developed	by	Google,	that	serves	as	the	official	appstore	for
Android,	allowing	consumers	to	browse	and	download	apps	developed	with	the	Android	SDK	and	published	through

Google.	

Android	versions
Google	provides	major	incremental	upgrades	to	the	Android	operating	system	every	six	to	nine	months,	using
confectionery-themed	names.	The	latest	major	release	is	Android	7.0	"Nougat".

Code	name Version	number Initial	release	date API	level

N/A 1.0 23	September	2008 1

1.0:	Introduction	to	Android

9

https://developer.android.com/reference/packages.html
https://play.google.com/store
https://play.google.com/store

N/A 1.1 9	February	2009 2

Cupcake 1.5 27	April	2009 3

Donut

1.6 15	September	2009 4

Eclair

2.0	–	2.1 26	October	2009 5–7

Froyo

2.2	–	2.2.3 20	May	2010 8

Gingerbread

1.0:	Introduction	to	Android

10

https://en.wikipedia.org/wiki/Android_Cupcake
https://en.wikipedia.org/wiki/Android_Donut
https://en.wikipedia.org/wiki/Android_Eclair
https://en.wikipedia.org/wiki/Android_Froyo
https://en.wikipedia.org/wiki/Android_Gingerbread

2.3	–	2.3.7 6	December	2010 9–10

Honeycomb

3.0	–	3.2.6 22	February	2011 11–13

Ice	Cream	Sandwich

4.0	–	4.0.4 18	October	2011 14–15

Jelly	Bean

1.0:	Introduction	to	Android

11

https://en.wikipedia.org/wiki/Android_Honeycomb
https://en.wikipedia.org/wiki/Android_Ice_Cream_Sandwich
https://developer.android.com/about/versions/jelly-bean.html

4.1	–	4.3.1 9	July	2012 16–18

KitKat

4.4	–	4.4.4 31	October	2013 19–20

Lollipop

5.0	–	5.1.1 12	November	2014 21–22

Marshmallow

1.0:	Introduction	to	Android

12

https://developer.android.com/about/versions/kitkat.html
https://developer.android.com/about/versions/lollipop.html
https://developer.android.com/about/versions/marshmallow/index.html

6.0	–	6.0.1 5	October	2015 23

Nougat

7.0 22	August	2016 24

See	previous	versions	and	their	features	at	The	Android	Story.

The	Dashboard	for	Platform	Versions	is	updated	regularly	to	show	the	distribution	of	active	devices	running	each	version	of
Android,	based	on	the	number	of	devices	that	visit	the	Google	Play	Store.	It's	a	good	practice	to	support	about	90%	of	the
active	devices,	while	targeting	your	app	to	the	latest	version.

Note:	To	provide	the	best	features	and	functionality	across	Android	versions,	use	the	Android	Support	Library	in	your	app.
This	support	library	allows	your	app	to	use	recent	platform	APIs	on	older	devices.

The	challenges	of	Android	app	development
While	the	Android	platform	provide	rich	functionality	for	app	development,	there	are	still	a	number	of	challenges	you	need
to	address,	such	as:

Building	for	a	multi-screen	world
Getting	performance	right
Keeping	your	code	and	your	users	secure
Remaining	compatible	with	older	platform	versions
Understanding	the	market	and	the	user.

Building	for	a	multi-screen	world

1.0:	Introduction	to	Android

13

https://developer.android.com/about/versions/nougat/index.html
https://www.android.com/history
http://developer.android.com/about/dashboards/index.html
https://developer.android.com/topic/libraries/support-library/index.html

Android	runs	on	billions	of	handheld	devices	around	the	world,	and	supports	various	form	factors	including	wearable
devices	and	televisions.	Devices	can	come	in	different	sizes	and	shapes	that	affect	the	screen	designs	for	UI	elements	in

your	apps.	

In	addition,	device	manufacturers	may	add	their	own	UI	elements,	styles,	and	colors	to	differentiate	their	products.	Each
manufacturer	offers	different	features	with	respect	to	keyboard	forms,	screen	size,	or	camera	buttons.	An	app	running	on
one	device	may	look	a	bit	different	on	another.	The	challenge	for	many	developers	is	to	design	UI	elements	that	can	work
on	all	devices	It	is	also	the	developer’s	responsibility	to	provide	an	app’s	resources	such	as	icons,	logos,	other	graphics,
and	text	styles	to	maintain	uniformity	of	appearance	across	different	devices.

Maximizing	app	performance

An	app's	performance—how	fast	it	runs,	how	easily	it	connects	to	the	network,	and	how	well	it	manages	battery	and
memory	usage—is	affected	by	factors	such	as	battery	life,	multimedia	content,	and	Internet	access.	You	must	be	aware	of
these	limitations	and	write	code	in	such	a	way	that	the	resource	utilization	is	balanced	and	distributed	optimally.	For
example,	you	will	have	to	balance	the	background	services	by	enabling	them	only	when	necessary;	this	will	save	battery
life	of	the	user’s	device.

Keeping	your	code	and	your	users	secure

You	need	to	take	precautions	to	secure	your	code	and	the	user’s	experience	when	using	your	app.	Use	tools	such	as
ProGuard	(provided	in	Android	Studio),	which	detects	and	removes	unused	classes,	fields,	methods,	and	attributes,	and
encrypt	all	of	your	app's	code	and	resources	while	packaging	the	app.	To	protect	your	user's	critical	information	such	as
logins	and	passwords,	you	must	secure	the	communication	channel	to	protect	data	in	transit	(across	the	Internet)	as	well	as
data	at	rest	(on	the	device).

Remaining	compatible	with	older	platform	versions

Consider	how	to	add	new	Android	platform	version	features	to	an	app,	while	ensuring	that	the	app	can	still	run	on	devices
with	older	platform	versions.	It	is	impractical	to	focus	only	on	the	most	recent	Android	version,	as	not	all	users	may	have
upgraded	or	may	be	able	to	upgrade	their	devices.

Learn	more
The	Android	Story
Android	API	Guide,	"Develop"	section:

Introduction	to	Android
Platform	Architecture

1.0:	Introduction	to	Android

14

https://www.android.com/history/#/marshmallow
https://developer.android.com/guide/index.html
https://developer.android.com/guide/platform/index.html

UI	Overview
Platform	Versions
Supporting	Different	Platform	Versions

Other:
Android	Studio	User's	Guide:	Image	Asset	Studio
Wikipedia:	Summary	of	Android	Version	History

1.0:	Introduction	to	Android

15

https://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/about/dashboards/index.html
https://developer.android.com/training/basics/supporting-devices/platforms.html
http://developer.android.com/tools/help/image-asset-studio.html
https://en.wikipedia.org/wiki/Android_version_history

1.1:	Create	Your	First	Android	App
Contents:

The	development	process
Using	Android	Studio
Exploring	a	project
Viewing	and	editing	Java	code
Viewing	and	editing	layouts
Understanding	the	build	process
Running	the	app	on	an	emulator	or	a	device
Using	the	log
Related	practical
Learn	more

This	chapter	describes	how	to	develop	applications	using	the	Android	Studio	Integrated	Development	Environment	(IDE).

The	development	process
An	Android	app	project	begins	with	an	idea	and	a	definition	of	the	requirements	necessary	to	realize	that	idea.	As	the
project	progresses,	it	goes	through	design,	development,	and	testing.	

The	above	diagram	is	a	high-level	picture	of	the	development	process,	with	the	following	steps:

Defining	the	idea	and	its	requirements:	Most	apps	start	with	an	idea	of	what	it	should	do,	bolstered	by	market	and	user
research.	During	this	stage	the	app's	requirements	are	defined.
Prototyping	the	user	interface:	Use	drawings,	mock	ups	and	prototypes	to	show	what	the	user	interface	would	look	like,
and	how	it	would	work.
Developing	and	testing	the	app:	An	app	consists	of	one	or	more	activities.	For	each	activity	you	can	use	Android
Studio	to	do	the	following,	in	no	particular	order:

Create	the	layout:	Place	UI	elements	on	the	screen	in	a	layout,	and	assign	string	resources	and	menu	items,	using
the	Extensible	Markup	Language	(XML).
Write	the	Java	code:	Create	source	code	for	components	and	tests,	and	use	testing	and	debugging	tools.
Register	the	activity:	Declare	the	activity	in	the	manifest	file.
Define	the	build:	Use	the	default	build	configuration	or	create	custom	builds	for	different	versions	of	your	app.

Publishing	the	app:	Assemble	the	final	APK	(package	file)	and	distribute	it	through	channels	such	as	the	Google	Play.

Using	Android	Studio

1.1:	Create	Your	First	Android	App

16

Android	Studio	provides	tools	for	the	testing,	and	publishing	phases	of	the	development	process,	and	a	unified
development	environment	for	creating	apps	for	all	Android	devices.	The	development	environment	includes	code	templates
with	sample	code	for	common	app	features,	extensive	testing	tools	and	frameworks,	and	a	flexible	build	system.

Starting	an	Android	Studio	project

After	you	have	successfully	installed	the	Android	Studio	IDE,	double-click	the	Android	Studio	application	icon	to	start	it.
Choose	Start	a	new	Android	Studio	project	in	the	Welcome	window,	and	name	the	project	the	same	name	that	you	want
to	use	for	the	app.

When	choosing	a	unique	Company	Domain,	keep	in	mind	that	apps	published	to	the	Google	Play	must	have	a	unique
package	name.	Since	domains	are	unique,	prepending	the	app's	name	with	your	name,	or	your	company's	domain	name,
should	provide	an	adequately	unique	package	name.	If	you	are	not	planning	to	publish	the	app,	you	can	accept	the	default
example	domain.	Be	aware	that	changing	the	package	name	later	is	extra	work.

Choosing	target	devices	and	the	minimum	SDK

When	choosing	Target	Android	Devices,	Phone	and	Tablet	are	selected	by	default,	as	shown	in	the	figure	below.	The
choice	shown	in	the	figure	for	the	Minimum	SDK	—	API	15:	Android	4.0.3	(IceCreamSandwich)	—	makes	your	app
compatible	with	97%	of	Android	devices	active	on	the	Google	Play	Store.	

Different	devices	run	different	versions	of	the	Android	system,	such	as	Android	4.0.3	or	Android	4.4.	Each	successive
version	often	adds	new	APIs	not	available	in	the	previous	version.	To	indicate	which	set	of	APIs	are	available,	each	version
specifies	an	API	level.	For	instance,	Android	1.0	is	API	level	1	and	Android	4.0.3	is	API	level	15.

The	Minimum	SDK	declares	the	minimum	Android	version	for	your	app.	Each	successive	version	of	Android	provides
compatibility	for	apps	that	were	built	using	the	APIs	from	previous	versions,	so	your	app	should	always	be	compatible	with
future	versions	of	Android	while	using	the	documented	Android	APIs.

Choosing	a	template

Android	Studio	pre-populates	your	project	with	minimal	code	for	an	activity	and	a	screen	layout	based	on	a	template.	A
variety	of	templates	are	available,	ranging	from	a	virtually	blank	template	(Add	No	Activity)	to	various	types	of	activities.

1.1:	Create	Your	First	Android	App

17

You	can	customize	the	activity	after	choosing	your	template.	For	example,	the	Empty	Activity	template	provides	a	single
activity	accompanied	by	a	single	layout	resource	for	the	screen.	You	can	choose	to	accept	the	commonly	used	name	for
the	activity	(such	as	MainActivity)	or	change	the	name	on	the	Customize	the	Activity	screen.	Also,	if	you	use	the	Empty
Activity	template,	be	sure	to	check	the	following	if	they	are	not	already	checked:

Generate	Layout	file:	Leave	this	checked	to	create	the	layout	resource	connected	to	this	activity,	which	is	usually
named	activity_main.xml.	The	layout	defines	the	user	interface	for	the	activity.
Backwards	Compatibility	(AppCompat):	Leave	this	checked	to	include	the	AppCompat	library	so	that	the	app	is
compatible	with	previous	versions	of	Android	even	if	it	uses	features	found	only	in	newer	versions.	

Android	Studio	creates	a	folder	for	the	newly	created	project	in	the	AndroidStudioProjects	folder	on	your	computer.

Android	Studio	window	panes

1.1:	Create	Your	First	Android	App

18

The	Android	Studio	main	window	is	made	up	of	several	logical	areas,	or	panes,	as	shown	in	the	figure	below.	

In	the	above	figure:

1.	 The	Toolbar.The	toolbar	carries	out	a	wide	range	of	actions,	including	running	the	Android	app	and	launching	Android
tools.

2.	 The	Navigation	Bar.	The	navigation	bar	allows	navigation	through	the	project	and	open	files	for	editing.	It	provides	a
more	compact	view	of	the	project	structure.

3.	 The	Editor	Pane.	This	pane	shows	the	contents	of	a	selected	file	in	the	project.	For	example,	after	selecting	a	layout
(as	shown	in	the	figure),	this	pane	shows	the	layout	editor	with	tools	to	edit	the	layout.	After	selecting	a	Java	code	file,
this	pane	shows	the	code	with	tools	for	editing	the	code.

4.	 The	Status	Bar.	The	status	bar	displays	the	status	of	the	project	and	Android	Studio	itself,	as	well	as	any	warnings	or
messages.	You	can	watch	the	build	progress	in	the	status	bar.

5.	 The	Project	Pane.	The	project	pane	shows	the	project	files	and	project	hierarchy.
6.	 The	Monitor	Pane.	The	monitor	pane	offers	access	to	the	TODO	list	for	managing	tasks,	the	Android	Monitor	for

monitoring	app	execution	(shown	in	the	figure),	the	logcat	for	viewing	log	messages,	and	the	Terminal	application	for
performing	Terminal	activities.

Tip:	You	can	organize	the	main	window	to	give	yourself	more	screen	space	by	hiding	or	moving	panes.	You	can	also	use
keyboard	shortcuts	to	access	most	features.	See	Keyboard	Shortcuts	for	a	complete	list.

Exploring	a	project
Each	project	in	Android	Studio	contains	the	AndroidManifest.xml	file,	component	source-code	files,	and	associated
resource	files.	By	default,	Android	Studio	organizes	your	project	files	based	on	the	file	type,	and	displays	them	within	the
Project:	Android	view	in	the	left	tool	pane,	as	shown	below.	The	view	provides	quick	access	to	your	project's	key	files.

1.1:	Create	Your	First	Android	App

19

https://developer.android.com/studio/intro/keyboard-shortcuts.html

To	switch	back	to	this	view	from	another	view,	click	the	vertical	Project	tab	in	the	far	left	column	of	the	Project	pane,	and
choose	Android	from	the	pop-up	menu	at	the	top	of	the	Project	pane,	as	shown	in	the	figure	below.	

In	the	figure	above:

1.	 The	Project	tab.	Click	to	show	the	project	view.
2.	 The	Android	selection	in	the	project	drop-down	menu.
3.	 The	AndroidManifest.xml	file.	Used	for	specifying	information	about	the	app	for	the	Android	runtime	environment.

The	template	you	choose	creates	this	file.
4.	 The	java	folder.	This	folder	includes	activities,	tests,	and	other	components	in	Java	source	code.	Every	activity,

service,	and	other	component	is	defined	as	a	Java	class,	usually	in	its	own	file.	The	name	of	the	first	activity	(screen)
the	user	sees,	which	also	initializes	app-wide	resources,	is	customarily	MainActivity.

5.	 The	res	folder.	This	folder	holds	resources,	such	as	XML	layouts,	UI	strings,	and	images.	An	activity	usually	is
associated	with	an	XML	resource	file	that	specifies	the	layout	of	its	views.	This	file	is	usually	named	after	its	activity	or
function.

6.	 The	build.gradle	(Module:	App)	file.	This	file	specifies	the	module's	build	configuration.	The	template	you	choose
creates	this	file,	which	defines	the	build	configuration,	including	the		minSdkVersion		attribute	that	declares	the	minimum
version	for	the	app,	and	the		targetSdkVersion		attribute	that	declares	the	highest	(newest)	version	for	which	the	app
has	been	optimized.	This	file	also	includes	a	list	of	dependencies,	which	are	libraries	required	by	the	code	—	such	as
the	AppCompat	library	for	supporting	a	wide	range	of	Android	versions.

1

Viewing	the	Android	Manifest

Before	the	Android	system	can	start	an	app	component,	the	system	must	know	that	the	component	exists	by	reading	the
app's	AndroidManifest.xml	file.	The	app	must	declare	all	its	components	in	this	file,	which	must	be	at	the	root	of	the	app
project	directory.

1.1:	Create	Your	First	Android	App

20

To	view	this	file,	expand	the	manifests	folder	in	the	Project:	Android	view,	and	double-click	the	file	(AndroidManifest.xml).
Its	contents	appear	in	the	editing	pane	as	shown	in	the	figure	below.	

Android	namespace	and	application	tag

The	Android	Manifest	is	coded	in	XML	and	always	uses	the	Android	namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

			package="com.example.android.helloworld">

The		package		expression	shows	the	unique	package	name	of	the	new	app.	Do	not	change	this	once	the	app	is	published.

			<application

			...

			</application>

The		<application		tag,	with	its	closing		</application>		tag,	defines	the	manifest	settings	for	the	entire	app.

Automatic	backup

The		android:allowBackup		attribute	enables	automatic	app	data	backup:

			...

			android:allowBackup="true"

			...

Setting	the		android:allowBackup		attribute	to		true		enables	the	app	to	be	backed	up	automatically	and	restored	as	needed.
Users	invest	time	and	effort	to	configure	apps.	Switching	to	a	new	device	can	cancel	out	all	that	careful	configuration.	The
system	performs	this	automatic	backup	for	nearly	all	app	data	by	default,	and	does	so	without	the	developer	having	to	write
any	additional	app	code.

For	apps	whose	target	SDK	version	is	Android	6.0	(API	level	23)	and	higher,	devices	running	Android	6.0	and	higher
automatically	create	backups	of	app	data	to	the	cloud	because	the		android:allowBackup		attribute	defaults	to		true		if
omitted.	For	apps	<	API	level	22	you	have	to	explicitly	add	the		android:allowBackup		attribute	and	set	it	to		true	.

Tip:	To	learn	more	about	the	automatic	backup	for	apps,	see	Configuring	Auto	Backup	for	Apps.

The	app	icon
The		android:icon		attribute	sets	the	icon	for	the	app:

1.1:	Create	Your	First	Android	App

21

https://developer.android.com/training/backup/autosyncapi.html

			...

			android:allowBackup="true"

			android:icon="@mipmap/ic_launcher"

			...

The		android:icon		attribute	assigns	an	icon	in	the	mipmap	folder	(inside	the	res	folder	in	Project:	Android	view)	to	the	app.
The	icon	appears	in	the	Launcher	for	launching	the	app.	The	icon	is	also	used	as	the	default	icon	for	app	components.

App	label	and	string	resources

As	you	can	see	in	the	previous	figure,	the		android:label		attribute	shows	the	string		"Hello	World"		highlighted.	If	you	click
on	this	string,	it	changes	to	show	the	string	resource		@string/app_name	:

			...

			android:label="@string/app_name"

			...

Tip:	Ctrl-click	or	right-click		app_name		in	the	edit	pane	to	see	the	context	menu.	Choose	Go	To	>	Declaration	to	see	where
the	string	resource	is	declared:	in	the	strings.xml	file.	When	you	choose	Go	To	>	Declaration	or	open	the	file	by	double-
clicking	strings.xml	in	the	Project:	Android	view	(inside	the	values	folder),	its	contents	appear	in	the	editing	pane.

After	opening	the	strings.xml	file,	you	can	see	that	the	string	name		app_name		is	set	to		Hello	World	.	You	can	change	the
app	name	by	changing	the		Hello	World		string	to	something	else.	String	resources	are	described	in	a	separate	lesson.

The	app	theme

The		android:theme		attribute	sets	the	app's	theme,	which	defines	the	appearance	of	user	interface	elements	such	as	text:

			...

			android:theme="@style/AppTheme">

			...

The		theme		attribute	is	set	to	the	standard	theme		AppTheme	.	Themes	are	described	in	a	separate	lesson.

Declaring	the	Android	version

Different	devices	may	run	different	versions	of	the	Android	system,	such	as	Android	4.0	or	Android	4.4.	Each	successive
version	can	add	new	APIs	not	available	in	the	previous	version.	To	indicate	which	set	of	APIs	are	available,	each	version
specifies	an	API	level.	For	instance,	Android	1.0	is	API	level	1	and	Android	4.4	is	API	level	19.

The	API	level	allows	a	developer	to	declare	the	minimum	version	with	which	the	app	is	compatible,	using	the		<uses-sdk>	
manifest	tag	and	its		minSdkVersion		attribute.	For	example,	the	Calendar	Provider	APIs	were	added	in	Android	4.0	(API
level	14).	If	your	app	can't	function	without	these	APIs,	declare	API	level	14	as	the	app's	minimum	supported	version	like
this:

<manifest	...	>

				<uses-sdk	android:minSdkVersion="14"	android:targetSdkVersion="19"	/>

				...

</manifest>

The		minSdkVersion		attribute	declares	the	minimum	version	for	the	app,	and	the		targetSdkVersion		attribute	declares	the
highest	(newest)	version	which	has	been	optimized	within	the	app.	Each	successive	version	of	Android	provides
compatibility	for	apps	that	were	built	using	the	APIs	from	previous	versions,	so	the	app	should	always	be	compatible	with
future	versions	of	Android	while	using	the	documented	Android	APIs.

1.1:	Create	Your	First	Android	App

22

The		targetSdkVersion		attribute	does	not	prevent	an	app	from	being	installed	on	Android	versions	that	are	higher	(newer)
than	the	specified	value,	but	it	is	important	because	it	indicates	to	the	system	whether	the	app	should	inherit	behavior
changes	in	newer	versions.	If	you	don't	update	the		targetSdkVersion		to	the	latest	version,	the	system	assumes	that	your
app	requires	some	backward-compatibility	behaviors	when	running	on	the	latest	version.	For	example,	among	the	behavior
changes	in	Android	4.4,	alarms	created	with	the	AlarmManager	APIs	are	now	inexact	by	default	so	that	the	system	can
batch	app	alarms	and	preserve	system	power,	but	the	system	will	retain	the	previous	API	behavior	for	an	app	if	your	target
API	level	is	lower	than		"19"	.

Viewing	and	editing	Java	code
Components	are	written	in	Java	and	listed	within	module	folders	in	the	java	folder	in	the	Project:	Android	view.	Each
module	name	begins	with	the	domain	name	(such	as	com.example.android)	and	includes	the	app	name.

The	following	example	shows	an	activity	component:

1.	 Click	the	module	folder	to	expand	it	and	show	the	MainActivity	file	for	the	activity	written	in	Java	(the		MainActivity	
class).

2.	 Double-click	MainActivity	to	see	the	source	file	in	the	editing	pane,	as	shown	in	the	figure	below.	

At	the	very	top	of	the	MainActivity.java	file	is	a		package		statement	that	defines	the	app	package.	This	is	followed	by	an
	import		block	condensed	in	the	above	figure,	with	"	...	".	Click	the	dots	to	expand	the	block	to	view	it.	The		import	
statements	import	libraries	needed	for	the	app,	such	as	the	following,	which	imports	the	AppCompatActivity	library:

import	android.support.v7.app.AppCompatActivity;

Each	activity	in	an	app	is	implemented	as	a	Java	class.	The	following	class	declaration	extends	the		AppCompatActivity	
class	to	implement	features	in	a	way	that	is	backward-compatible	with	previous	versions	of	Android:

public	class	MainActivity	extends	AppCompatActivity	{

				...

}

As	you	learned	earlier,	before	the	Android	system	can	start	an	app	component	such	as	an	activity,	the	system	must	know
that	the	activity	exists	by	reading	the	app's	AndroidManifest.xml	file.	Therefore,	each	activity	must	be	listed	in	the
AndroidManifest.xml	file.

Viewing	and	editing	layouts
Layout	resources	are	written	in	XML	and	listed	within	the	layout	folder	in	the	res	folder	in	the	Project:	Android	view.	Click
res	>	layout	and	then	double-click	activity_main.xml	to	see	the	layout	file	in	the	editing	pane.

1.1:	Create	Your	First	Android	App

23

Android	Studio	shows	the	Design	view	of	the	layout,	as	shown	in	the	figure	below.	This	view	provides	a	Palette	pane	of
user	interface	elements,	and	a	grid	showing	the	screen	layout.	

Understanding	the	build	process
The	Android	application	package	(APK)	is	the	package	file	format	for	distributing	and	installing	Android	mobile	apps.	The
build	process	involves	tools	and	processes	that	automatically	convert	each	project	into	an	APK.

Android	Studio	uses	Gradle	as	the	foundation	of	the	build	system,	with	more	Android-specific	capabilities	provided	by	the
Android	Plugin	for	Gradle.	This	build	system	runs	as	an	integrated	tool	from	the	Android	Studio	menu.

Understanding	build.gradle	files

When	you	create	a	project,	Android	Studio	automatically	generates	the	necessary	build	files	in	the	Gradle	Scripts	folder	in
Project:	Android	view.	Android	Studio	build	files	are	named	build.gradle	as	shown	below:	

1.1:	Create	Your	First	Android	App

24

Each	project	has	the	following:

build.gradle	(Project:	apptitle)

This	is	the	top-level	build	file	for	the	entire	project,	located	in	the	root	project	directory,	which	defines	build	configurations
that	apply	to	all	modules	in	your	project.	This	file,	generated	by	Android	Studio,	should	not	be	edited	to	include	app
dependencies.

build.gradle	(Module:	app)

Android	Studio	creates	separate		build.gradle	(Module:	app)		files	for	each	module.	You	can	edit	the	build	settings	to
provide	custom	packaging	options	for	each	module,	such	as	additional	build	types	and	product	flavors,	and	to	override
settings	in	the	manifest	or	top-level	build.gradle	file.	This	file	is	most	often	the	file	to	edit	when	changing	app-level
configurations,	such	as	declaring	dependencies	in	the		dependencies		section.	The	following	shows	the	contents	of	a
project's		build.gradle	(Module:	app)		file:

apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	24

				buildToolsVersion	"24.0.1"

				defaultConfig	{

								applicationId	"com.example.android.helloworld2"

								minSdkVersion	15

								targetSdkVersion	24

								versionCode	1

								versionName	"1.0"

								testInstrumentationRunner	"android.support.test.runner.AndroidJUnitRunner"

				}

				buildTypes	{

								release	{

												minifyEnabled	false

												proguardFiles	getDefaultProguardFile('proguard-android.txt'),	'proguard-rules.pro'

								}

				}

}

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

				androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2',	{

								exclude	group:	'com.android.support',	module:	'support-annotations'

				})

				compile	'com.android.support:appcompat-v7:24.2.1'

				testCompile	'junit:junit:4.12'

}

The	build.gradle	files	use	Gradle	syntax.	Gradle	is	a	Domain	Specific	Language	(DSL)	for	describing	and	manipulating	the
build	logic	using	Groovy,	which	is	a	dynamic	language	for	the	Java	Virtual	Machine	(JVM).	You	don't	need	to	learn	Groovy
to	make	changes,	because	the	Android	Plugin	for	Gradle	introduces	most	of	the	DSL	elements	you	need.

Tip:	To	learn	more	about	the	Android	plugin	DSL,	read	the	DSL	reference	documentation.

Plugin	and	Android	blocks

In	the	above		build.gradle	(Module:	app)		file,	the	first	statement	applies	the	Android-specific	Gradle	plug-in	build	tasks:

apply	plugin:	'com.android.application'

android	{

			...

}

1.1:	Create	Your	First	Android	App

25

http://groovy-lang.org/
http://google.github.io/android-gradle-dsl/current/index.html

The		android	{	}		block	specifies	the	following	for	the	build:

The	target	SDK	version	for	compiling	the	code:

compileSdkVersion	24

The	version	of	the	build	tools	to	use	for	building	the	app:

buildToolsVersion	"24.0.1"

The	defaultConfig	block

Core	settings	and	entries	for	the	app	are	specified	in	a		defaultConfig	{	}		block	within	the		android	{	}	block:	

			...

			defaultConfig	{

						applicationId	"com.example.hello.helloworld"

						minSdkVersion	15

						targetSdkVersion	23

						versionCode	1

						versionName	"1.0"

												testInstrumentationRunner

															"android.support.test.runner.AndroidJUnitRunner"

			}

...

The		minSdkVersion		and		targetSdkVersion		settings	override	any	AndroidManifest.xml	settings	for	the	minimum	SDK
version	and	the	target	SDK	version.	See	"Declaring	the	Android	version"	previously	in	this	chapter	for	background
information	on	these	settings.

The		testInstrumentationRunner		statement	adds	the	instrumentation	support	for	testing	the	user	interface	with	Espresso
and	UIAutomator.	These	are	described	in	a	separate	lesson.

Build	types

Build	types	for	the	app	are	specified	in	a		buildTypes	{	}		block,	which	controls	how	the	app	is	built	and	packaged.

...

buildTypes	{

			release	{

						minifyEnabled	false

						proguardFiles	getDefaultProguardFile('proguard-android.txt'),

																																															'proguard-rules.pro'

			}

}

...

The	build	type	specified	is		release		for	the	app's	release.	Another	common	build	type	is		debug	.	Configuring	build	types	is
described	in	a	separate	lesson.

Dependencies

Dependencies	for	the	app	are	defined	in	the		dependencies	{	}		block,	which	is	the	part	of	the	build.gradle	file	that	is	most
likely	to	change	as	you	start	developing	code	that	depends	on	other	libraries.	The	block	is	part	of	the	standard	Gradle	API
and	belongs	outside	the		android	{	}		block.

1.1:	Create	Your	First	Android	App

26

...

dependencies	{

			compile	fileTree(dir:	'libs',	include:	['*.jar'])

			androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2',	{

exclude	group:	'com.android.support',	module:	'support-annotations'

			})

			compile	'com.android.support:appcompat-v7:24.2.0'

			testCompile	'junit:junit:4.12'

}

In	the	above	snippet,	the	statement		compile	fileTree(dir:	'libs',	include:	['*.jar'])		adds	a	dependency	of	all	".jar"
files	inside	the		libs		directory.	The		compile		configuration	compiles	the	main	application	—	everything	in	it	is	added	to	the
compilation	classpath,	and	also	packaged	into	the	final	APK.

Syncing	your	project

When	you	make	changes	to	the	build	configuration	files	in	a	project,	Android	Studio	requires	that	you	sync	the	project	files
so	that	it	can	import	the	build	configuration	changes	and	run	some	checks	to	make	sure	the	configuration	won't	create	build
errors.

To	sync	the	project	files,	click	Sync	Now	in	the	notification	bar	that	appears	when	making	a	change,	or	click	Sync	Project
from	the	menu	bar.	If	Android	Studio	notices	any	errors	with	the	configuration	—	for	example,	if	the	source	code	uses	API
features	that	are	only	available	in	an	API	level	higher	than	the		compileSdkVersion		—	the	Messages	window	appears	to
describe	the	issue.	

Running	the	app	on	an	emulator	or	a	device
With	virtual	device	emulators,	you	can	test	an	app	on	different	devices	such	as	tablets	or	smartphones	—	with	different	API
levels	for	different	Android	versions	—	to	make	sure	it	looks	good	and	works	for	most	users.	Although	it's	a	good	idea,	you
don't	have	to	depend	on	having	a	physical	device	available	for	app	development.

The	Android	Virtual	Device	(AVD)	manager	creates	a	virtual	device	or	emulator	that	simulates	the	configuration	for	a
particular	type	of	Android	device.	Use	the	AVD	Manager	to	define	the	hardware	characteristics	of	a	device	and	its	API	level,
and	to	save	it	as	a	virtual	device	configuration.	When	you	start	the	Android	emulator,	it	reads	a	specified	configuration	and
creates	an	emulated	device	on	your	computer	that	behaves	exactly	like	a	physical	version	of	that	device.

Creating	a	virtual	device

To	run	an	emulator	on	your	computer,	use	the	AVD	Manager	to	create	a	configuration	that	describes	the	virtual	device.

Select	Tools	>	Android	>	AVD	Manager,	or	click	the	AVD	Manager	icon	 	in	the	toolbar.

1.1:	Create	Your	First	Android	App

27

The	"Your	Virtual	Devices"	screen	appears	showing	all	of	the	virtual	devices	created	previously.	Click	the	+Create	Virtual
Device	button	to	create	a	new	virtual	device.	

You	can	select	a	device	from	a	list	of	predefined	hardware	devices.	For	each	device,	the	table	shows	its	diagonal	display
size	(Size),	screen	resolution	in	pixels	(Resolution),	and	pixel	density	(Density).	For	example,	the	pixel	density	of	the	Nexus
5	device	is		xxhdpi	,	which	means	the	app	uses	the	icons	in	the	xxhdpi	folder	of	the	mipmap	folder.	Likewise,	the	app	will
use	layouts	and	drawables	from	folders	defined	for	that	density	as	well.	

You	also	choose	the	version	of	the	Android	system	for	the	device.	The	Recommended	tab	shows	the	recommended
systems	for	the	device.	More	versions	are	available	under	the	x86	Images	and	Other	Images	tabs.

1.1:	Create	Your	First	Android	App

28

Running	the	app	on	the	virtual	device

To	run	the	app	on	the	virtual	device	you	created	in	the	previous	section,	follow	these	steps:

1.	 In	Android	Studio,	select	Run	>	Run	app	or	click	the	Run	icon	 	in	the	toolbar.
2.	 In	the	Select	Deployment	Target	window,	under	Available	Emulators,	select	the	virtual	device	you	created,	and	click

OK.

The	emulator	starts	and	boots	just	like	a	physical	device.	Depending	on	the	speed	of	your	computer,	this	may	take	a	while.
The	app	builds,	and	once	the	emulator	is	ready,	Android	Studio	uploads	the	app	to	the	emulator	and	runs	it.

You	should	see	the	app	created	from	the	Empty	Activity	template	("Hello	World")	as	shown	in	the	following	figure,	which
also	shows	Android	Studio's	Run	pane	that	displays	the	actions	performed	to	run	the	app	on	the	emulator.

Note:	When	testing	on	an	emulator,	it	is	good	practice	to	start	it	up	once	at	the	very	beginning	of	your	session,	and	not	to
close	it	until	done	so	that	it	doesn't	have	to	go	through	the	boot	process	again.

In	the	above	figure:

1.	 The	Emulator	running	the	app.
2.	 The	Run	Pane.	This	shows	the	actions	taken	to	install	and	run	the	app.

Running	the	app	on	a	physical	device
Always	test	your	apps	on	physical	device,	because	users	will	use	the	app	on	physical	devices.	While	emulators	are	quite
good,	they	can't	show	all	possible	device	states,	such	as	what	happens	if	an	incoming	call	occurs	while	the	app	is	running.
To	run	the	app	on	a	physical	device,	you	need	the	following:

An	Android	device	such	as	a	smartphone	or	tablet.
A	data	cable	to	connect	the	Android	device	to	your	computer	via	the	USB	port.
If	you	are	using	Linux	or	Windows,	it	may	be	necessary	to	perform	additional	steps	to	run	the	app	on	a	hardware
device.	Check	the	Using	Hardware	Devices	documentation.	On	Windows,	you	may	need	to	install	the	appropriate	USB
driver	for	the	device.	See	OEM	USB	Drivers.

To	let	Android	Studio	communicate	with	a	device,	turn	on	USB	Debugging	on	the	Android	device.	On	Android	version	4.2
and	newer,	the	Developer	options	screen	is	hidden	by	default.	Follow	these	steps	to	turn	on	USB	Debugging:

1.	 On	the	physical	device,	open	Settings	and	choose	About	phone	at	the	bottom	of	the	Settings	screen.

1.1:	Create	Your	First	Android	App

29

http://developer.android.com/tools/device.html
http://developer.android.com/tools/extras/oem-usb.html

2.	 Tap	the	Build	number	information	seven	times.

You	read	that	correctly:	Tap	it	seven	times.

3.	 Return	to	the	previous	screen	(Settings).	Developer	options	now	appears	at	the	bottom	of	the	screen.	Tap
Developer	options.

4.	 Choose	USB	Debugging.

Now,	connect	the	device	and	run	the	app	from	Android	Studio.

Troubleshooting	the	device	connection

If	Android	Studio	does	not	recognize	the	device,	try	the	following:

1.	 Disconnect	the	device	from	your	computer,	and	then	reconnect	it.
2.	 Restart	Android	Studio.
3.	 If	your	computer	still	does	not	find	the	device	or	declares	it	"unauthorized":

i.	 Disconnect	the	device	from	your	computer.

ii.	 On	the	device,	choose	Settings	>	Developer	Options.

iii.	 Tap	Revoke	USB	Debugging	authorizations.

iv.	 Reconnect	the	device	to	your	computer.

v.	 When	prompted,	grant	authorizations.

4.	 You	may	need	to	install	the	appropriate	USB	driver	for	the	device.	See	Using	Hardware	Devices	documentation.
5.	 Check	the	latest	documentation,	programming	forums,	or	get	help	from	your	instructors.

Using	the	log
The	log	is	a	powerful	debugging	tool	you	can	use	to	look	at	values,	execution	paths,	and	exceptions.	After	you	add	logging
statements	to	an	app,	your	log	messages	appear	along	with	general	log	messages	in	the	logcat	tab	of	the	Android	Monitor
pane	of	Android	Studio.

To	see	the	Android	Monitor	pane,	click	the	Android	Monitor	button	at	the	bottom	of	the	Android	Studio	main	window.	The
Android	Monitor	offers	two	tabs:

The	logcat	tab.	The	logcat	tab	displays	log	messages	about	the	app	as	it	is	running.	If	you	add	logging	statements	to
the	app,	your	log	messages	from	these	statements	appear	with	the	other	log	messages	under	this	tab.
The	Monitors	tab.	The	Monitors	tab	monitors	the	performance	of	the	app,	which	can	be	helpful	for	debugging	and
tuning	your	code.

Adding	logging	statements	to	your	app

Logging	statements	add	whatever	messages	you	specify	to	the	log.	Adding	logging	statements	at	certain	points	in	the	code
allows	the	developer	to	look	at	values,	execution	paths,	and	exceptions.

For	example,	the	following	logging	statement	adds		"MainActivity"		and		"Hello	World"		to	the	log:

Log.d("MainActivity",	"Hello	World");

The	following	are	the	elements	of	this	statement:

	Log	:	The	Log	class	is	the	API	for	sending	log	messages.
	d	:	You	assign	a	log	level	so	that	you	can	filter	the	log	messages	using	the	drop-down	menu	in	the	center	of	the
logcat	tab	pane.	The	following	are	log	levels	you	can	assign:

1.1:	Create	Your	First	Android	App

30

http://developer.android.com/tools/device.html
http://developer.android.com/reference/android/util/Log.html

	d	:	Choose	Debug	or	Verbose	to	see	these	messages.
	e	:	Choose	Error	or	Verbose	to	see	these	messages.
	w	:	Choose	Warning	or	Verbose	to	see	these	messages.
	i	:	Choose	Info	or	Verbose	to	see	these	messages.

	"MainActivity"	:	The	first	argument	is	a	log	tag	which	can	be	used	to	filter	messages	under	the	logcat	tab.	This	is
commonly	the	name	of	the	activity	from	which	the	message	originates.	However,	you	can	make	this	anything	that	is
useful	to	you	for	debugging	the	app.	The	best	practice	is	to	use	a	constant	as	a	log	tag,	as	follows:

1.	 Define	the	log	tag	as	a	constant	before	using	it	in	logging	statement:

		private	static	final	String	LOG_TAG	=

							MainActivity.class.getSimpleName();

2.	 Use	the	constant	in	the	logging	statements:

Log.d(LOG_TAG,	"Hello	World");

3.	 	"Hello	World"	:	The	second	argument	is	the	actual	message	that	appears	after	the	log	level	and	log	tag	under	the
logcat	tab.

Viewing	your	log	messages
The	Run	pane	appears	in	place	of	the	Android	Monitor	pane	when	you	run	the	app	on	an	emulator	or	a	device.	After
starting	to	run	the	app,	click	the	Android	Monitor	button	at	the	bottom	of	the	main	window,	and	then	click	the	logcat	tab	in
the	Android	Monitor	pane	if	it	is	not	already	selected.	

In	the	above	figure:

1.	 The	logging	statement	in	the		onCreate()		method	of		MainActivity	.
2.	 Android	Monitor	pane	showing		logcat		log	messages,	including	the	message	from	the	logging	statement.

By	default,	the	log	display	is	set	to	Verbose	in	the	drop-down	menu	at	the	top	of	the	logcat	display	to	show	all	messages.
You	can	change	this	to	Debug	to	see	messages	that	start	with		Log.d	,	or	change	it	to	Error	to	see	messages	that	start
with		Log.e	,	and	so	on.

1.1:	Create	Your	First	Android	App

31

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Install	Android	Studio	and	Run	"Hello	World"

Learn	more
Android	Studio	documentation:

Meet	Android	Studio
Android	Studio	download	page
Configure	Build	Variants
Create	and	Manage	Virtual	Devices
Sign	Your	App
Shrink	Your	Code	and	Resources

Android	API	Guide,	"Develop"	section:
Introduction	to	Android
Platform	Architecture
UI	Overview
Platform	Versions
Supporting	Different	Platform	Versions
Supporting	Multiple	Screens

Other:
Android	Studio	User's	Guide:	Image	Asset	Studio
Wikipedia:	Summary	of	Android	Version	History
Groovy	syntax
Gradle	site

1.1:	Create	Your	First	Android	App

32

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/11_p_hello_world.html
https://developer.android.com/studio/intro/index.html
http://developer.android.com/sdk/index.html
https://developer.android.com/studio/build/build-variants.html
https://developer.android.com/studio/run/managing-avds.html
https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/about/dashboards/index.html
https://developer.android.com/training/basics/supporting-devices/platforms.html
https://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/tools/help/image-asset-studio.html
https://en.wikipedia.org/wiki/Android_version_history
http://groovy-lang.org/syntax.html
https://gradle.org/

1.2:	Layouts,	Views	and	Resources
Contents:

The	model-view-presenter	pattern
Views
Resource	files
Responding	to	view	clicks
Related	practical
Learn	more

This	chapter	describes	the	screen's	user	interface	layout	and	other	resources	you	create	for	your	app,	and	the	code	you
would	use	to	respond	to	a	user's	tap	of	a	user	interface	element.

The	model-view-presenter	pattern
Linking	an	activity	to	a	layout	resource	is	an	example	of	part	of	the	model-view-presenter	(MVP)	architecture	pattern.	The
MVP	pattern	is	a	well-established	way	to	group	app	functions:

Views.	Views	are	user	interface	elements	that	display	data	and	respond	to	user	actions.	Every	element	of	the	screen	is
a	view.	The	Android	system	provides	many	different	kinds	of	views.
Presenters.	Presenters	connect	the	application's	views	to	the	model.	They	supply	the	views	with	data	as	specified	by
the	model,	and	also	provide	the	model	with	user	input	from	the	view.
Model.	The	model	specifies	the	structure	of	the	app's	data	and	the	code	to	access	and	manipulate	the	data.	Some	of
the	apps	you	create	in	the	lessons	work	with	models	for	accessing	data.	The	Hello	Toast	app	does	not	use	a	data
model,	but	you	can	think	of	its	logic	—	display	a	message,	and	increase	a	tap	counter	—	as	the	model.	

Views
The	UI	consists	of	a	hierarchy	of	objects	called	views	—	every	element	of	the	screen	is	a	view.	The	View	class	represents
the	basic	building	block	for	all	UI	components,	and	the	base	class	for	classes	that	provide	interactive	UI	components	such
as	buttons,	checkboxes,	and	text	entry	fields.

A	view	has	a	location,	expressed	as	a	pair	of	left	and	top	coordinates,	and	two	dimensions,	expressed	as	a	width	and	a
height.	The	unit	for	location	and	dimensions	is	the	device-independent	pixel	(dp).

The	Android	system	provides	hundreds	of	predefined	views,	including	those	that	display:

1.2:	Layouts,	Views	and	Resources

33

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
https://developer.android.com/reference/android/view/View.html

Text	(TextView)
Fields	for	entering	and	editing	text	(EditText)
Buttons	users	can	tap	(Button)	and	other	interactive	components
Scrollable	text	(ScrollView)	and	scrollable	items	(RecyclerView)
Images	(ImageView)

You	can	define	a	view	to	appear	on	the	screen	and	respond	to	a	user	tap.	A	view	can	also	be	defined	to	accept	text	input,
or	to	be	invisible	until	needed.

You	can	specify	the	views	in	XML	layout	resource	files.	Layout	resources	are	written	in	XML	and	listed	within	the	layout
folder	in	the	res	folder	in	the	Project:	Android	view.

View	groups
Views	can	be	grouped	together	inside	a	view	group	(ViewGroup),	which	acts	as	a	container	of	views.	The	relationship	is
parent-child,	in	which	the	parent	is	a	view	group,	and	the	child	is	a	view	or	view	group	within	the	group.	The	following	are
common	view	groups:

ScrollView:	A	group	that	contains	one	other	child	view	and	enables	scrolling	the	child	view.
RecyclerView:	A	group	that	contains	a	list	of	other	views	or	view	groups	and	enables	scrolling	them	by	adding	and
removing	views	dynamically	from	the	screen.

Layout	view	groups

The	views	for	a	screen	are	organized	in	a	hierarchy.	At	the	root	of	this	hierarchy	is	a	ViewGroup	that	contains	the	layout	of
the	entire	screen.	The	view	group's	child	screens	can	be	other	views	or	other	view	groups	as	shown	in	the	following	figure.	

In	the	above	figure:

1.	 The	root	view	group.
2.	 The	first	set	of	child	views	and	view	groups	whose	parent	is	the	root.

Some	view	groups	are	designated	as	layouts	because	they	organize	child	views	in	a	specific	way	and	are	typically	used	as
the	root	view	group.	Some	examples	of	layouts	are:

LinearLayout:	A	group	of	child	views	positioned	and	aligned	horizontally	or	vertically.
RelativeLayout:	A	group	of	child	views	in	which	each	view	is	positioned	and	aligned	relative	to	other	views	within	the
view	group.	In	other	words,	the	positions	of	the	child	views	can	be	described	in	relation	to	each	other	or	to	the	parent
view	group.
ConstraintLayout:	A	group	of	child	views	using	anchor	points,	edges,	and	guidelines	to	control	how	views	are
positioned	relative	to	other	elements	in	the	layout.	ConstraintLayout	was	designed	to	make	it	easy	to	drag	and	drop
views	in	the	layout	editor.

1.2:	Layouts,	Views	and	Resources

34

http://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/widget/LinearLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.html
http://tools.android.com/tech-docs/layout-editor

TableLayout:	A	group	of	child	views	arranged	into	rows	and	columns.
AbsoluteLayout:	A	group	that	lets	you	specify	exact	locations	(x/y	coordinates)	of	its	child	views.	Absolute	layouts	are
less	flexible	and	harder	to	maintain	than	other	types	of	layouts	without	absolute	positioning.
FrameLayout:	A	group	of	child	views	in	a	stack.	FrameLayout	is	designed	to	block	out	an	area	on	the	screen	to	display
one	view.	Child	views	are	drawn	in	a	stack,	with	the	most	recently	added	child	on	top.	The	size	of	the	FrameLayout	is
the	size	of	its	largest	child	view.
GridLayout:	A	group	that	places	its	child	screens	in	a	rectangular	grid	that	can	be	scrolled.	

Tip:	Learn	more	about	different	layout	types	in	Common	Layout	Objects.

A	simple	example	of	a	layout	with	child	views	is	the	Hello	Toast	app	in	one	of	the	early	lessons.	The	view	for	the	Hello	Toast
app	appears	in	the	figure	below	as	a	diagram	of	the	layout	file	(activity_main.xml),	along	with	a	hierarchy	diagram	(top	right)
and	a	screenshot	of	the	actual	finished	layout	(bottom	right).	

In	the	figure	above:

1.	 LinearLayout	root	layout,	which	contains	all	the	child	views,	set	to	a	vertical	orientation.
2.	 Button	(button_toast)	child	view.	As	the	first	child	view,	it	appears	at	the	top	in	the	linear	layout.
3.	 TextView	(show_count)	child	view.	As	the	second	child	view,	it	appears	under	the	first	child	view	in	the	linear	layout.
4.	 Button	(button_count)	child	view.	As	the	third	child	view,	it	appears	under	the	second	child	view	in	the	linear	layout.

The	view	hierarchy	can	grow	to	be	complex	for	an	app	that	shows	many	views	on	a	screen.	It's	important	to	understand	the
view	hierarchy,	as	it	affects	whether	views	are	visible	and	efficiently	they	are	drawn.

Tip:	You	can	explore	the	view	hierarchy	of	your	app	using	Hierarchy	Viewer.	It	shows	a	tree	view	of	the	hierarchy	and	lets
you	analyze	the	performance	of	views	on	an	Android	device.	Performance	issues	are	covered	in	a	subsequent	chapter.

1.2:	Layouts,	Views	and	Resources

35

https://developer.android.com/reference/android/widget/TableLayout.html
https://developer.android.com/reference/android/widget/AbsoluteLayout.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://developer.android.com/reference/android/widget/GridLayout.html
https://developer.android.com/guide/topics/ui/layout-objects.html
https://developer.android.com/studio/profile/hierarchy-viewer-walkthru.html

You	define	views	in	the	layout	editor,	or	by	entering	XML	code.	The	layout	editor	shows	a	visual	representation	of	XML
code.

Using	the	layout	editor

Use	the	layout	editor	to	edit	the	layout	file.	You	can	drag	and	drop	view	objects	into	a	graphical	pane,	and	arrange,	resize,
and	specify	properties	for	them.	You	immediately	see	the	effect	of	changes	you	make.

To	use	the	layout	editor,	open	the	XML	layout	file.	The	layout	editor	appears	with	the	Design	tab	at	the	bottom	highlighted.
(If	the	Text	tab	is	highlighted	and	you	see	XML	code,	click	the	Design	tab.)	For	the	Empty	Activity	template,	the	layout	is	as
shown	in	the	figure	below.	

In	the	figure	above:

1.	 XML	layout	file.	The	XML	layout	file,	typically	named	activiy_main.xml	file.	Double-click	it	to	open	the	layout	editor.
2.	 Palette	of	UI	elements	(views).	The	Palette	pane	provides	a	list	of	UI	elements	and	layouts.	Add	an	element	or	layout

to	the	UI	by	dragging	it	into	the	design	pane.
3.	 Design	toolbar.	The	design	pane	toolbar	provides	buttons	to	configure	your	layout	appearance	in	the	design	pane	and

to	edit	the	layout	properties.	See	the	figure	below	for	details.

Tip:	Hover	over	each	icon	to	view	a	tooltip	that	summarizes	its	function.

4.	 Properties	pane.	The	Properties	pane	provides	property	controls	for	the	selected	view.
5.	 Property	control.	Property	controls	correspond	to	XML	attributes.	Shown	in	the	figure	is	the		Text		property	of	the

selected	TextView,	set	to		Hello	World!	.
6.	 Design	pane.	Drag	views	from	the	Palette	pane	to	the	design	pane	to	position	them	in	the	layout.
7.	 Component	Tree.	The	Component	Tree	pane	shows	the	view	hierarchy.	Click	a	view	or	view	group	in	this	pane	to

select	it.	The	figure	shows	the	TextView	selected.
8.	 Design	and	Text	tabs.	Click	Design	to	see	the	layout	editor,	or	Text	to	see	XML	code.

1.2:	Layouts,	Views	and	Resources

36

The	layout	editor's	design	toolbar	offers	a	row	of	buttons	that	let	you	configure	the	appearance	of	the	layout:	

In	the	figure	above:

1.	 Design,	Blueprint,	and	Both:	Click	the	Design	icon	(first	icon)	to	display	a	color	preview	of	your	layout.	Click	the
Blueprint	icon	(middle	icon)	to	show	only	outlines	for	each	view.	You	can	see	both	views	side	by	side	by	clicking	the
third	icon.

2.	 Screen	orientation:	Click	to	rotate	the	device	between	landscape	and	portrait.
3.	 Device	type	and	size:	Select	the	device	type	(phone/tablet,	Android	TV,	or	Android	Wear)	and	screen	configuration

(size	and	density).
4.	 API	version:	Select	the	version	of	Android	on	which	to	preview	the	layout.
5.	 App	theme:	Select	which	UI	theme	to	apply	to	the	preview.
6.	 Language:	Select	the	language	to	show	for	your	UI	strings.	This	list	displays	only	the	languages	available	in	the	string

resources.
7.	 Layout	Variants:	Switch	to	one	of	the	alternative	layouts	for	this	file,	or	create	a	new	one.

The	layout	editor	offers	more	features	in	the	Design	tab	when	you	use	a	ConstraintLayout,	including	handles	for	defining
constraints.	A	constraint	is	a	connection	or	alignment	to	another	view,	to	the	parent	layout,	or	to	an	invisible	guideline.	Each
constraint	appears	as	a	line	extending	from	a	circular	handle.	Each	view	has	a	circular	constraint	handle	in	the	middle	of
each	side.	After	selecting	a	view	in	the	Component	Tree	pane	or	clicking	on	it	in	the	layout,	the	view	also	shows	resizing
handles	on	each	corner.	

In	the	above	figure:

1.	 Resizing	handle.
2.	 Constraint	line	and	handle.	In	the	figure,	the	constraint	aligns	the	left	side	of	the	view	to	the	left	side	of	the	button.
3.	 Baseline	handle.	The	baseline	handle	aligns	the	text	baseline	of	a	view	to	the	text	baseline	of	another	view.
4.	 Constraint	handle	without	a	constraint	line.

1.2:	Layouts,	Views	and	Resources

37

Using	XML

It	is	sometimes	quicker	and	easier	to	edit	the	XML	code	directly,	especially	when	copying	and	pasting	the	code	for	similar
views.

To	view	and	edit	the	XML	code,	open	the	XML	layout	file.	The	layout	editor	appears	with	the	Design	tab	at	the	bottom
highlighted.	Click	the	Text	tab	to	see	the	XML	code.	The	following	shows	an	XML	code	snippet	of	a	LinearLayout	with	a
Button	and	a	TextView:

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				...	>

				<Button

								android:id="@+id/button_toast"

								android:layout_width="@dimen/my_view_width"

								android:layout_height="wrap_content"

								...	/>

				<TextView

								android:id="@+id/show_count"

								android:layout_width="@dimen/my_view_width"

								android:layout_height="@dimen/counter_height"

								...	/>

				...

</LinearLayout>

XML	attributes	(view	properties)
Views	have	properties	that	define	where	a	view	appears	on	the	screen,	its	size,	how	the	view	relates	to	other	views,	and
how	it	responds	to	user	input.	When	defining	views	in	XML,	the	properties	are	referred	to	as	attributes.

For	example,	in	the	following	XML	description	of	a	TextView,	the		android:id	,		android:layout_width	,
	android:layout_height	,		android:background	,	are	XML	attributes	that	are	translated	automatically	into	the	TextView's
properties:

<TextView

							android:id="@+id/show_count"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:background="@color/myBackgroundColor"

							android:textStyle="bold"

							android:text="@string/count_initial_value"

/>

Attributes	generally	take	this	form:

android:attribute_name="value"

The	attribute_name	is	the	name	of	the	attribute.	The	value	is	a	string	with	the	value	for	the	attribute.	For	example:

android:textStyle="bold"

If	the	value	is	a	resource,	such	as	a	color,	the		@		symbol	specifies	what	kind	of	resource.	For	example:

android:background="@color/myBackgroundColor"

1.2:	Layouts,	Views	and	Resources

38

The	background	attribute	is	set	to	the	color	resource	identified	as		myBackgroundColor	,	which	is	declared	to	be		#FFF043	.
Color	resources	are	described	in	"Style-related	attributes"	in	this	chapter.

Every	view	and	view	group	supports	its	own	variety	of	XML	attributes.	Some	attributes	are	specific	to	a	view	(for	example,
TextView	supports	the		textSize		attribute),	but	these	attributes	are	also	inherited	by	any	views	that	may	extend	the
TextView	class.	Some	are	common	to	all	views,	because	they	are	inherited	from	the	root	View	class	(like	the		android:id	
attribute).	For	descriptions	of	specific	attributes,	see	the	overview	section	of	the	View	class	documentation.

Identifying	a	view

To	uniquely	identify	a	view	and	reference	it	from	your	code,	you	must	give	it	an	id.	The		android:id		attribute	lets	you
specify	a	unique		id		—	a	resource	identifier	for	a	view.

For	example:

android:id="@+id/button_count"

The		"@+id/button_count"		part	of	the	above	attribute	creates	a	new		id		called		button_count		for	the	view.	You	use	the	plus
(+)	symbol	to	indicate	that	you	are	creating	a	new		id	.

Referencing	a	view

To	refer	to	an	existing	resource	identifier,	omit	the	plus	(+)	symbol.	For	example,	to	refer	to	a	view	by	its		id		in	another
attribute,	such	as		android:layout_toLeftOf		(described	in	the	next	section)	to	control	the	position	of	a	view,	you	would	use:

android:layout_toLeftOf="@id/show_count"

In	the	above	attribute,		"@id/show_count"		refers	to	the	view	with	the	resource	identifier		show_count	.	The	attribute	positions
the	view	to	be	"to	the	left	of"	the		show_count		view.

Positioning	views

Some	layout-related	positioning	attributes	are	required	for	a	view,	and	automatically	appear	when	you	add	the	view	to	the
XML	layout,	ready	for	you	to	add	values.

LinearLayout	positioning

For	example,	LinearLayout	is	required	to	have	these	attributes	set:

android:layout_width
android:layout_height
android:orientation

The		android:layout_width		and		android:layout_height		attributes	can	take	one	of	three	values:

	match_parent		expands	the	view	to	fill	its	parent	by	width	or	height.	When	the	LinearLayout	is	the	root	view,	it	expands
to	the	size	of	the	device	screen.	For	a	view	within	a	root	view	group,	it	expands	to	the	size	of	the	parent	view	group.
	wrap_content		shrinks	the	view	dimensions	just	big	enough	to	enclose	its	content.	(If	there	is	no	content,	the	view
becomes	invisible.)
Use	a	fixed	number	of		dp		(device-independent	pixels)	to	specify	a	fixed	size,	adjusted	for	the	screen	size	of	the
device.	For	example,		16dp		means	16	device-independent	pixels.	Device-independent	pixels	and	other	dimensions	are
described	in	"Dimensions"	in	this	chapter.

The		android:orientation		can	be:

	horizontal:		Views	are	arranged	from	left	to	right.
	vertical:		Views	are	arranged	from	top	to	bottom.

1.2:	Layouts,	Views	and	Resources

39

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html#attr_android:layout_width
https://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html#attr_android:layout_height
https://developer.android.com/reference/android/widget/LinearLayout.html#attr_android:orientation
https://en.wikipedia.org/wiki/Device_independent_pixel

Other	layout-related	attributes	include:

	Android:layout_gravity	:	This	attribute	is	used	with	a	view	to	control	where	the	view	is	arranged	within	its	parent	view
group.	For	example,	the	following	attribute	centers	the	view	horizontally	on	the	screen:

android:layout_gravity="center_horizontal"

Padding	is	the	space,	measured	in	device-independent	pixels,	between	the	edges	of	the	view	and	the	view's	content,

as	shown	in	the	figure	below.	

In	the	figure	above:

1.	 Padding	is	the	space	between	the	edges	of	the	view	(dashed	lines)	and	the	view's	content	(solid	line).	Padding	is	not
the	same	as	margin,	which	is	the	space	from	the	edge	of	the	view	to	its	parent.

A	view's	size	includes	its	padding.	The	following	are	commonly	used	padding	attributes:

	Android:padding	:	Sets	the	padding	of	all	four	edges.
	android:paddingTop	:	Sets	the	padding	of	the	top	edge.
	android:paddingBottom	:	Sets	the	padding	of	the	bottom	edge.
	android:paddingLeft	:	Sets	the	padding	of	the	left	edge.
	android:paddingRight	:	Sets	the	padding	of	the	right	edge.
	android:paddingStart	:	Sets	the	padding	of	the	start	of	the	view;	used	in	place	of	the	above,	especially	with	views	that
are	long	and	narrow.
	android:paddingEnd	:	Sets	the	padding,	in	pixels,	of	the	end	edge;	used	along	with		android:paddingStart	.

Tip:	To	see	all	of	the	XML	attributes	for	a	LinearLayout,	see	the	Summary	section	of	the	LinearLayout	reference	in	the
Developer	Guide.	Other	root	layouts,	such	as	RelativeLayout	and	AbsoluteLayout,	list	their	XML	attributes	in	the	Summary
sections.

RelativeLayout	Positioning
Another	useful	view	group	for	layout	is	RelativeLayout,	which	you	can	use	to	position	child	views	relative	to	each	other	or	to
the	parent.	The	attributes	you	can	use	with	RelativeLayout	include	the	following:

android:layout_toLeftOf:	Positions	the	right	edge	of	this	view	to	the	left	of	another	view	(identified	by	its		ID).
android:layout_toRightOf:	Positions	the	left	edge	of	this	view	to	the	right	of	another	view	(identified	by	its		ID).
android:layout_centerHorizontal:	Centers	this	view	horizontally	within	its	parent.
android:layout_centerVertical:	Centers	this	view	vertically	within	its	parent.
android:layout_alignParentTop:	Positions	the	top	edge	of	this	view	to	match	the	top	edge	of	the	parent.
android:layout_alignParentBottom:	Positions	the	bottom	edge	of	this	view	to	match	the	bottom	edge	of	the	parent.

For	a	complete	list	of	attributes	for	views	in	a	RelativeLayout,	see	RelativeLayout.LayoutParams.

Style-related	attributes

1.2:	Layouts,	Views	and	Resources

40

https://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/guide/topics/ui/layout/relative.html
https://developer.android.com/reference/android/widget/AbsoluteLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html#attr_android:layout_toLeftOf
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html#attr_android:layout_toRightOf
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html#attr_android:layout_centerHorizontal
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html#attr_android:layout_centerVertical
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html#attr_android:layout_alignParentTop
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html#attr_android:layout_alignParentBottom
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html

You	specify	style	attributes	to	customize	the	view's	appearance.	Views	that	don't	have	style	attributes,	such	as
	android:textColor	,		android:textSize	,	and		android:background	,	take	on	the	styles	defined	in	the	app's	theme.

The	following	are	style-related	attributes	used	in	the	XML	layout	example	in	the	previous	section:

	Android:background	:	Specifies	a	color	or	drawable	resource	to	use	as	the	background.
	android:text	:	Specifies	text	to	display	in	the	view.
	android:textColor	:	Specifies	the	text	color.
	android:textSize	:	Specifies	the	text	size.
	android:textStyle	:	Specifies	the	text	style,	such	as		bold	.

Resource	files
Resource	files	are	a	way	of	separating	static	values	from	code	so	that	you	don't	have	to	change	the	code	itself	to	change
the	values.	You	can	store	all	the	strings,	layouts,	dimensions,	colors,	styles,	and	menu	text	separately	in	resource	files.

Resource	files	are	stored	in	folders	located	in	the	res	folder,	including:

drawable:	For	images	and	icons
layout:	For	layout	resource	files
menu:	For	menu	items
mipmap:	For	pre-calculated,	optimized	collections	of	app	icons	used	by	the	Launcher
values:	For	colors,	dimensions,	strings,	and	styles	(theme	attributes)

The	syntax	to	reference	a	resource	in	an	XML	layout	is	as	follows:

@package_name:resource_type/resource_name

The	package_name	is	the	name	of	the	package	in	which	the	resource	is	located.	This	is	not	required	when	referencing
resources	from	the	same	package	—	that	is,	stored	in	the	res	folder	of	your	project.
resource_type	is	the		R		subclass	for	the	resource	type.	See	Resource	Types	for	more	information	about	each
resource	type	and	how	to	reference	them.
resource_name	is	either	the	resource	filename	without	the	extension,	or	the		android:name		attribute	value	in	the	XML
element.

For	example,	the	following	XML	layout	statement	sets	the		android:text		attribute	to	a		string		resource:

android:text="@string/button_label_toast"

The	resource_type	is		string	.
The	resource_name	is		button_label_toast.	
There	is	no	need	for	a	package_name	because	the	resource	is	stored	in	the	project	(in	the	strings.xml	file).

Another	example:	this	XML	layout	statement	sets	the		android:background		attribute	to	a		color		resource,	and	since	the
resource	is	defined	in	the	project	(in	the	colors.xml	file),	the	package_name	is	not	specified:

android:background="@color/colorPrimary"

In	the	following	example,	the	XML	layout	statement	sets	the		android:textColor		attribute	to	a		color		resource.	However,
the	resource	is	not	defined	in	the	project	but	supplied	by	Android,	so	the	package_name		android		must	also	be	specified,
followed	by	a	colon:

android:textColor="@android:color/white"

1.2:	Layouts,	Views	and	Resources

41

https://developer.android.com/guide/topics/resources/available-resources.html

Tip:	For	more	information	about	accessing	resources	from	code,	see	Accessing	Resources.	For	Android	color	constants,
see	the	Android	standard	R.color	resources.

Values	resource	files

Keeping	values	such	as	strings	and	colors	in	separate	resource	files	makes	it	easier	to	manage	them,	especially	if	you	use
them	more	than	once	in	your	layouts.

For	example,	it	is	essential	to	keep	strings	in	a	separate	resource	file	for	translating	and	localizing	your	app,	so	that	you	can
create	a	string	resource	file	for	each	language	without	changing	your	code.	Resource	files	for	images,	colors,	dimensions,
and	other	attributes	are	handy	for	developing	an	app	for	different	device	screen	sizes	and	orientations.

Strings

String	resources	are	located	in	the	strings.xml	file	in	the	values	folder	inside	the	res	folder	when	using	the	Project:
Android	view.	You	can	edit	this	file	directly	by	opening	it:

<resources>

				<string	name="app_name">Hello	Toast</string>

				<string	name="button_label_count">Count</string>

				<string	name="button_label_toast">Toast</string>

				<string	name="count_initial_value">0</string>

</resources>

The		name		(for	example,		button_label_count)	is	the	resource	name	you	use	in	your	XML	code,	as	in	the	following	attribute:

android:text="@string/button_label_count"

The	string	value	of	this		name		is	the	word	(Count)	enclosed	within	the		<string></string>		tags	(you	don't	use	quotation
marks	unless	the	quotation	marks	should	be	part	of	the	string	value.)

Extracting	strings	to	resources
You	should	also	extract	hard-coded	strings	in	an	XML	layout	file	to	string	resources.	To	extract	a	hard-coded	string	in	an
XML	layout,	follow	these	steps	(refer	to	the	figure):	

1.2:	Layouts,	Views	and	Resources

42

http://developer.android.com/guide/topics/resources/accessing-resources.html
http://developer.android.com/reference/android/R.color.html

1.	 Click	on	the	hard-coded	string,	and	press	Alt-Enter	in	Windows,	or	Option-Return	on	Mac	OS	X.
2.	 Select	Extract	string	resource.
3.	 Edit	the	Resource	name	for	the	string	value.

You	can	then	use	the	resource	name	in	your	XML	code.	Use	the	expression		"@string/resource_name"		(including	quotation
marks)	to	refer	to	the	string	resource:

android:text="@string/button_label_count"

Colors
Color	resources	are	located	in	the	colors.xml	file	in	the	values	folder	inside	the	res	folder	when	using	the	Project:	Android
view.	You	can	edit	this	file	directly:

<resources>

				<color	name="colorPrimary">#3F51B5</color>

				<color	name="colorPrimaryDark">#303F9F</color>

				<color	name="colorAccent">#FF4081</color>

				<color	name="myBackgroundColor">#FFF043</color>

</resources>

The		name		(for	example,		colorPrimary)	is	the	resource	name	you	use	in	your	XML	code:

android:textColor="@color/colorPrimary"

The	color	value	of	this		name		is	the	hexadecimal	color	value	(#3F51B5)	enclosed	within	the		<color></color>		tags.	The
hexadecimal	value	specifies	red,	green,	and	blue	(RGB)	values.	The	value	always	begins	with	a	pound	(#)	character,
followed	by	the	Alpha-Red-Green-Blue	information.	For	example,	the	hexadecimal	value	for	black	is	#000000,	while	the
hexadecimal	value	for	a	variant	of	sky	blue	is	#559fe3.	Base	color	values	are	listed	in	the	Color	class	documentation.

The		colorPrimary		color	is	one	of	the	predefined	base	colors	and	is	used	for	the	app	bar.	In	a	production	app,	you	could,
for	example,	customize	this	to	fit	your	brand.	Using	the	base	colors	for	other	UI	elements	creates	a	uniform	UI.

Tip:	For	the	material	design	specification	for	Android	colors,	see	Style	and	Using	the	Material	Theme.	For	common	color
hexadecimal	values,	see	Color	Hex	Color	Codes.	For	Android	color	constants,	see	the	Android	standard	R.color	resources.

1.2:	Layouts,	Views	and	Resources

43

https://developer.android.com/reference/android/graphics/Color.html
https://material.google.com/style/color.html
https://developer.android.com/training/material/theme.html
http://www.color-hex.com/
http://developer.android.com/reference/android/R.color.html

You	can	see	a	small	block	of	the	color	choice	in	the	left	margin	next	to	the	color	resource	declaration	in	colors.xml,	and
also	in	the	left	margin	next	to	the	attribute	that	uses	the	resource	name	in	the	layout	XML	file.	

	

Tip:	To	see	the	color	in	a	popup,	turn	on	the	Autopopup	documentation	feature.	Choose	Android	Studio	>	Preferences	>
Editor	>	General	>	Code	Completion,	and	check	the	"Autopopup	documentation	in	(ms)"	option.	You	can	then	hover	your
cursor	over	a	color	resource	name	to	see	the	color.

Dimensions

Dimensions	should	be	separated	from	the	code	to	make	them	easier	to	manage,	especially	if	you	need	to	adjust	your
layout	for	different	device	resolutions.	It	also	makes	it	easy	to	have	consistent	sizing	for	views,	and	to	change	the	size	of
multiple	views	by	changing	one	dimension	resource.

Dimension	resources	are	located	in	a	dimens.xml	file	in	the	values	folder	inside	the	res	folder	when	using	the	Project:
Android	view.	The	dimens.xml	shown	in	the	view	can	be	a	folder	holding	more	than	one	dimens.xml	file	for	different
device	resolutions.	For	example,	the	app	created	from	the	Empty	Activity	template	provides	a	second	dimens.xml	file	for
820dp.

You	can	edit	this	file	directly	by	opening	it:

<resources>

				<!--	Default	screen	margins,	per	the	Android	Design	guidelines.	-->

				<dimen	name="activity_horizontal_margin">16dp</dimen>

				<dimen	name="activity_vertical_margin">16dp</dimen>

				<dimen	name="my_view_width">300dp</dimen>

				<dimen	name="count_text_size">200sp</dimen>

				<dimen	name="counter_height">300dp</dimen>

</resources>

The		name		(for	example,		activity_horizontal_margin)	is	the	resource	name	you	use	in	the	XML	code:

android:paddingLeft="@dimen/activity_horizontal_margin"

The	value	of	this		name		is	the	measurement	(16dp)	enclosed	within	the		<dimen></dimen>		tags.

You	can	extract	dimensions	in	the	same	way	as	strings::

1.	 Click	on	the	hard-coded	dimension,	and	press	Alt-Enter	in	Windows,	or	press	Option-Return	on	Mac	OS	X.
2.	 Select	Extract	dimension	resource.
3.	 Edit	the	Resource	name	for	the	dimension	value.

Device-independent	pixels	(dp)	are	independent	of	screen	resolution.	For	example,		10px		(10	fixed	pixels)	will	look	a	lot
smaller	on	a	higher	resolution	screen,	but	Android	will	scale	1	0dp		(10	device-independent	pixels)	to	look	right	on	different
resolution	screens.	Text	sizes	can	also	be	set	to	look	right	on	different	resolution	screens	using	scaled-pixel	(sp)	sizes.

Tip:	For	more	information	about		dp		and		sp		units,	see	Supporting	Different	Densities.

Styles

A	style	is	a	resource	that	specifies	common	attributes	such	as	height,	padding,	font	color,	font	size,	background	color.
Styles	are	meant	for	attributes	that	modify	the	look	of	the	view.

1.2:	Layouts,	Views	and	Resources

44

https://en.wikipedia.org/wiki/Device_independent_pixel
http://developer.android.com/training/multiscreen/screendensities.html

Styles	are	defined	in	the	styles.xml	file	in	the	values	folder	inside	the	res	folder	when	using	the	Project:	Android	view.	You
can	edit	this	file	directly.	Styles	are	covered	in	a	later	chapter,	along	with	the	Material	Design	Specification.

Other	resource	files

Android	Studio	defines	other	resources	that	are	covered	in	other	chapters:

Images	and	icons.	The	drawable	folder	provides	icon	and	image	resources.	If	your	app	does	not	have	a	drawable
folder,	you	can	manually	create	it	inside	the	res	folder.	For	more	information	about	drawable	resources,	see	Drawable
Resources	in	the	App	Resources	section	of	the	Android	Developer	Guide.
Optimized	icons.	The	mipmap	folder	typically	contains	pre-calculated,	optimized	collections	of	app	icons	used	by	the
Launcher.	Expand	the	folder	to	see	that	versions	of	icons	are	stored	as	resources	for	different	screen	densities.
Menus.	You	can	use	an	XML	resource	file	to	define	menu	items	and	store	them	in	your	project	in	the	menu	folder.
Menus	are	described	in	a	later	chapter.

Responding	to	view	clicks
A	click	event	occurs	when	the	user	taps	or	clicks	a	clickable	view,	such	as	a	Button,	ImageButton,	ImageView	(tapping	or
clicking	the	image),	or	FloatingActionButton.

The	model-view-presenter	pattern	is	useful	for	understanding	how	to	respond	to	view	clicks.	When	an	event	occurs	with	a
view,	the	presenter	code	performs	an	action	that	affects	the	model	code.	In	order	to	make	this	pattern	work,	you	have	to:

Write	a	Java	method	that	performs	the	specific	action,	which	is	determined	by	the	logic	of	the	model	code	—	that	is,
the	action	depends	on	what	you	want	the	app	to	do	when	this	event	occurs.	This	is	typically	referred	to	as	an	event
handler.
Associate	this	event	handler	method	to	the	view,	so	that	the	method	executes	when	the	event	occurs.

The	onClick	attribute

Android	Studio	provides	a	shortcut	for	setting	up	a	clickable	view,	and	for	associating	an	event	handler	with	the	view:	use
the		android:onClick		attribute	with	the	clickable	view's	element	in	the	XML	layout.

For	example,	the	following	XML	expression	in	the	layout	file	for	a	Button	sets		showToast()		as	the	event	handler:

android:onClick="showToast"

When	the		b	utton	is	tapped,	its		android:onClick		attribute	calls	the		showToast()		method.

Write	the	event	handler,	such	as		showToast()		referenced	in	the	XML	code	above,	to	call	other	methods	that	implement	the
app's	model	logic:

public	void	showToast(View	view)	{

								//	Do	something	in	response	to	the	button	click.

}

In	order	to	work	with	the		android:onClick		attribute,	the		showToast()		method	must	be		public	,	return		void	,	and	require	a
	view		parameter	in	order	to	know	which	view	called	the	method.

Android	Studio	provides	a	shortcut	for	creating	an	event	handler	stub	(a	placeholder	for	the	method	that	you	can	fill	in	later)
in	the	Java	code	for	the	activity	associated	with	the	XML	layout.	Follow	these	steps:

1.	 Inside	the	XML	layout	file	(such	as	activity_main.xml),	click	the	method	name	in	the		android:onClick		attribute
statement.

2.	 Press	Alt-Enter	in	Windows	or	Option-Return	in	Mac	OS	X,	and	select	Create	onClick	event	handler.
3.	 Choose	the	activity	associated	with	the	layout	file	(such	as	MainActivity)	and	click	OK.	This	creates	a	placeholder

1.2:	Layouts,	Views	and	Resources

45

https://developer.android.com/guide/topics/resources/drawable-resource.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/ImageButton.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/support/design/widget/FloatingActionButton.html

method	stub	in	MainActivity.java.

Updating	views

To	update	a	view's	contents,	such	as	replacing	the	text	in	a	TextView,	your	code	must	first	instantiate	an	object	from	the
view.	Your	code	can	then	update	the	object,	thereby	updating	the	view.

To	refer	to	the	view	in	your	code,	use	the	findViewById()	method	of	the	View	class,	which	looks	for	a	view	based	on	the
resource		id	.	For	example,	the	following	statement	sets		mShowCount		to	be	the	TextView	with	the	resource	id		show_count	:

mShowCount	=	(TextView)	findViewById(R.id.show_count);

From	this	point	on,	your	code	can	use		mShowCount		to	represent	the	TextView,	so	that	when	you	update		mShowCount	,	the
view	is	updated.

For	example,	when	the	following	button	with	the		android:onClick		attribute	is	tapped,	onClick	calls	the		countUp()		method:

android:onClick="countUp"

You	can	implement		countUp()		to	increment	the	count,	convert	the	count	to	a	string,	and	set	the	string	as	the	text	for	the
	mShowCount		object:

public	void	countUp(View	view)	{

								mCount++;

								if	(mShowCount	!=	null)

												mShowCount.setText(Integer.toString(mCount));

}

Since	you	had	already	associated		mShowCount		with	the	TextView	for	displaying	the	count,	the		mShowCount.setText()	
method	updates	the	text	view	on	the	screen.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Make	Your	First	Interactive	UI
Using	Layouts

Learn	more
Android	Studio	documentation:

Android	Studio	User	Guide
Android	API	Guide,	"Develop"	section:

UI	Overview
Common	Layout	Objects
Color	class	definition
Android	standard	R.color	resources
Supporting	Different	Densities

Material	Design:
Style
Using	the	Material	Theme

Other:
Android	Studio	User's	Guide:	Image	Asset	Studio
Model-View-Presenter	(MVP)	architecture	pattern

1.2:	Layouts,	Views	and	Resources

46

https://developer.android.com/reference/android/view/View.html#findViewById(int)
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/12_p_make_your_first_interactive_ui.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/12b_p_using_layouts.html
https://developer.android.com/studio/intro/index.html
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/ui/layout-objects.html
https://developer.android.com/reference/android/graphics/Color.html
http://developer.android.com/reference/android/R.color.html
http://developer.android.com/training/multiscreen/screendensities.html
https://material.google.com/style/color.html
https://developer.android.com/training/material/theme.html
http://developer.android.com/tools/help/image-asset-studio.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter

Hierarchy	Viewer	for	visualizing	the	view	hierarchy
Color	Hex	Color	Codes

1.2:	Layouts,	Views	and	Resources

47

https://developer.android.com/studio/profile/hierarchy-viewer-walkthru.html
http://www.color-hex.com/

1.3:	Text	and	Scrolling	Views
Contents:

TextView
Scrolling	views
Related	practical
Learn	more

This	chapter	describes	one	of	the	most	often	used	views	in	apps:	the	TextView,	which	shows	textual	content	on	the	screen.
A	TextView	can	be	used	to	show	a	message,	a	response	from	a	database,	or	even	entire	magazine-style	articles	that	users
can	scroll.	This	chapter	also	shows	how	you	can	create	a	scrolling	view	of	text	and	other	elements.

TextView
One	view	you	may	use	often	is	the	TextView	class,	which	is	a	subclass	of	the	View	class	that	displays	text	on	the	screen.
You	can	use	TextView	for	a	view	of	any	size,	from	a	single	character	or	word	to	a	full	screen	of	text.	You	can	add	a	resource
	id		to	the	TextView,	and	control	how	the	text	appears	using	attributes	in	the	XML	layout	file.

You	can	refer	to	a	TextView	view	in	your	Java	code	by	using	its	resource		id	,	and	update	the	text	from	your	code.	If	you
want	to	allow	users	to	edit	the	text,	use	EditText,	a	subclass	of	TextView	that	allows	text	input	and	editing.	You	learn	all
about	EditText	in	another	chapter.

TextView	attributes

You	can	use	XML	attributes	to	control:

Where	the	TextView	is	positioned	in	a	layout	(like	any	other	view)
How	the	view	itself	appears,	such	as	with	a	background	color
What	the	text	looks	like	within	the	view,	such	as	the	initial	text	and	its	style,	size,	and	color

For	example,	to	set	the	width,	height,	and	position	within	a	LinearLayout:

<TextView

			...

			android:layout_width="match_parent"

			android:layout_height="wrap_content"

			…	/>

To	set	the	initial	text	value	of	the	view,	use	the		android:text		attribute:

android:text="Hello	World!"

1.3:	Text	and	Scrolling	Views

48

https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/EditText.html

You	can	extract	the	text	string	into	a	string	resource	(perhaps	called		hello_world)	that's	easier	to	maintain	for	multiple-
language	versions	of	the	app,	or	if	you	need	to	change	the	string	in	the	future.	After	extracting	the	string,	use	the	string
resource	name	with		@string/		to	specify	the	text:

android:text="@string/hello_world"

The	most	often	used	attributes	with	TextView	are	the	following:

android:text:	Set	the	text	to	display.
android:textColor:	Set	the	color	of	the	text.	You	can	set	the	attribute	to	a	color	value,	a	predefined	resource,	or	a
theme.	Color	resources	and	themes	are	described	in	other	chapters.
android:textAppearance:	The	appearance	of	the	text,	including	its	color,	typeface,	style,	and	size.	You	set	this	attribute
to	a	predefined	style	resource	or	theme	that	already	defines	these	values.
android:textSize:	Set	the	text	size	(if	not	already	set	by		android:textAppearance).	Use		sp		(scaled-pixel)	sizes	such	as
	20sp		or		14.5sp	,	or	set	the	attribute	to	a	predefined	resource	or	theme.
android:textStyle:	Set	the	text	style	(if	not	already	set	by		android:textAppearance).	Use		normal	,		bold	,		italic	,	or
	bold	|	italic	.
Android:typeface:	Set	the	text	typeface	(if	not	already	set	by		android:textAppearance).	Use		normal	,		sans	,		serif	,	or
	monospace	.
android:lineSpacingExtra:	Set	extra	spacing	between	lines	of	text.	Use		sp		(scaled-pixel)	or	dp	(device-independent
pixel)	sizes,	or	set	the	attribute	to	a	predefined	resource	or	theme.
android:autoLink:	Controls	whether	links	such	as	URLs	and	email	addresses	are	automatically	found	and	converted	to
clickable	(touchable)	links.	Use	one	of	the	following:

	none	:	Match	no	patterns	(default).
	web	:	Match	web	URLs.
	email	:	Match	email	addresses.
	phone	:	Match	phone	numbers.
	map	:	Match	map	addresses.
	all	:	Match	all	patterns	(equivalent	to	web|email|phone|map).

For	example,	to	set	the	attribute	to	match	web	URLs,	use	this:

android:autoLink="web"

Using	embedded	tags	in	text

In	an	app	that	accesses	magazine	or	newspaper	articles,	the	articles	that	appear	would	probably	come	from	an	online
source	or	might	be	saved	in	advance	in	a	database	on	the	device.	You	can	also	create	text	as	a	single	long	string	in	the
strings.xml	resource.

In	either	case,	the	text	may	contain	embedded	HTML	tags	or	other	text	formatting	codes.	To	properly	display	in	a	text	view,
text	must	be	formatted	following	these	rules:

If	you	have	an	apostrophe	(')	in	your	text,	you	must	escape	it	by	preceding	it	with	a	backslash	(\').	If	you	have	a	double-
quote	in	your	text,	you	must	also	escape	it	(\").	You	must	also	escape	any	other	non-ASCII	characters.	See	the
"Formatting	and	Styling"	section	of	String	Resources	for	more	details.
The	TextView	ignores	all	HTML	tags	except	the	following:

Use	the	HTML	and		tags	around	words	that	should	be	in	bold.
Use	the	HTML	and	</i>	tags	around	words	that	should	be	in	italics.	Note,	however,	that	if	you	use	curled
apostrophes	within	an	italic	phrase,	you	should	replace	them	with	straight	apostrophes.
You	can	combine	bold	and	italics	by	combining	the	tags,	as	in	...	words...</i>.

To	create	a	long	string	of	text	in	the	strings.xml	file,	enclose	the	entire	text	within		<string	name="your_string_name">
</string>		in	the	strings.xml	file	(your_string_name	is	the	name	you	provide	the	string	resource,	such	as		article_text).

1.3:	Text	and	Scrolling	Views

49

https://developer.android.com/reference/android/widget/TextView.html#attr_android:text
https://developer.android.com/reference/android/widget/TextView.html#attr_android:textColor
https://developer.android.com/reference/android/widget/TextView.html#attr_android:textAppearance
https://developer.android.com/reference/android/widget/TextView.html#attr_android:textSize
https://developer.android.com/reference/android/widget/TextView.html#attr_android:textStyle
https://developer.android.com/reference/android/widget/TextView.html#attr_android:typeface
https://developer.android.com/reference/android/widget/TextView.html#attr_android:lineSpacingExtra
https://developer.android.com/reference/android/widget/TextView.html#attr_android:autoLink
https://developer.android.com/guide/topics/resources/string-resource.html#FormattingAndStyling

Text	lines	in	the	strings.xml	file	don't	wrap	around	to	the	next	line	—	they	extend	beyond	the	right	margin.	This	is	the	correct
behavior.	Each	new	line	of	text	starting	at	the	left	margin	represents	an	entire	paragraph.

Enter	\n	to	represent	the	end	of	a	line,	and	another	\n	to	represent	a	blank	line.	If	you	don't	add	end-of-line	characters,	the
paragraphs	will	run	into	each	other	when	displayed	on	the	screen.

Tip:	If	you	want	to	see	the	text	wrapped	in	strings.xml,	you	can	press	Return	to	enter	hard	line	endings,	or	format	the	text
first	in	a	text	editor	with	hard	line	endings.	The	endings	will	not	be	displayed	on	the	screen.

Referring	to	a	TextView	in	code
To	refer	to	a	TextView	in	your	Java	code,	use	its	resource		id	.	For	example,	to	update	a	TextView	with	new	text,	you
would:

1.	 Find	the	TextView	(with	the	id		show_count)	and	assign	it	to	a	variable.	You	use	the		findViewById()		method	of	the
View	class,	and	refer	to	the	view	you	want	to	find	using	this	format:

R.id.view_id

In	which		view_id		is	the	resource	identifier	for	the	view:

mShowCount	=	(TextView)	findViewById(R.id.show_count);

2.	 After	retrieving	the	view	as	a	TextView	member	variable,	you	can	then	set	the	text	of	the	text	view	to	the	new	text	using
the	setText()	method	of	the	TextView	class:

mShowCount.setText(mCount_text);

Scrolling	views
If	the	information	you	want	to	show	in	your	app	is	larger	than	the	device's	display,	you	can	create	a	scrolling	view	that	the
user	can	scroll	vertically	by	swiping	up	or	down,	or	horizontally	by	swiping	right	or	left.

You	would	typically	use	a	scrolling	view	for	news	stories,	articles,	or	any	lengthy	text	that	doesn't	completely	fit	on	the
display.	You	can	also	use	a	scrolling	view	to	combine	views	(such	as	a	TextView	and	a	Button)	within	a	scrolling	view.

Creating	a	layout	with	a	ScrollView

1.3:	Text	and	Scrolling	Views

50

https://developer.android.com/reference/android/widget/TextView.html#setText(java.lang.CharSequence)

The	ScrollView	class	provides	the	layout	for	a	vertical	scrolling	view.	(For	horizontal	scrolling,	you	would	use
HorizontalScrollView.)	ScrollView	is	a	subclass	of	FrameLayout,	which	means	that	you	can	place	only	one	view	as	a	child

within	it;	that	child	contains	the	entire	contents	to	scroll.	

Even	though	you	can	place	only	one	child	view	inside	a	ScrollView,	the	child	view	could	be	a	view	group	with	a	hierarchy	of
child	views,	such	as	a	LinearLayout.	A	good	choice	for	a	view	within	a	ScrollView	is	a	LinearLayout	that	is	arranged	in	a

vertical	orientation.	

ScrollView	and	performance

With	a	ScrollView,	all	of	your	views	are	in	memory	and	in	the	view	hierarchy	even	if	they	aren't	displayed	on	screen.	This
makes	ScrollView	useful	for	smoothly	scrolling	pages	of	free-form	text,	because	the	text	is	already	in	memory.	However,
ScrollView	can	use	up	a	lot	of	memory,	which	can	affect	the	performance	of	the	rest	of	your	app.

Using	nested	instances	of	LinearLayout	can	also	lead	to	an	excessively	deep	view	hierarchy,	which	can	slow	down
performance.	Nesting	several	instances	of	LinearLayout	that	use	the		android:layout_weight		attribute	can	be	especially
expensive	as	each	child	view	needs	to	be	measured	twice.	Consider	using	flatter	layouts	such	as	RelativeLayout	or
GridLayout	to	improve	performance.

Complex	layouts	with	ScrollView	may	suffer	performance	issues,	especially	with	child	views	such	as	images.	We
recommend	that	you	not	use	images	with	a	ScrollView.	To	display	long	lists	of	items,	or	images,	consider	using	a
RecyclerView.	Also,	using	AsyncTask	provides	a	simple	way	to	perform	work	outside	the	main	thread,	such	as	loading
images	in	a	background	thread,	then	applying	them	to	the	UI	once	finished.	AsyncTask	is	covered	in	another	chapter.

1.3:	Text	and	Scrolling	Views

51

https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/reference/android/widget/HorizontalScrollView.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.html
https://developer.android.com/reference/android/widget/GridLayout.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/os/AsyncTask.html

ScrollView	with	a	TextView

To	show	a	scrollable	magazine	article	on	the	screen,	you	might	use	a	RelativeLayout	for	the	screen	that	includes	a
separate	TextView	for	the	article	heading,	another	for	the	article	subheading,	and	a	third	TextView	for	the	scrolling	article
text	(see	figure	below),	set	within	a	ScrollView.	The	only	part	of	the	screen	that	would	scroll	would	be	the	ScrollView	with
the	article	text.	

ScrollView	with	a	LinearLayout

The	ScrollView	view	group	can	contain	only	one	view;	however,	that	view	can	be	a	view	group	that	contains	views,	such	as
LinearLayout.	You	can	nest	a	view	group	such	as	LinearLayout	within	the	ScrollView	view	group,	thereby	scrolling
everything	that	is	inside	the	LinearLayout.

1.3:	Text	and	Scrolling	Views

52

https://developer.android.com/reference/android/widget/LinearLayout.html

When	adding	a	LinearLayout	inside	a	ScrollView,	use		match_parent		for	the	LinearLayout's		android:layout_width		attribute
to	match	the	width	of	the	parent	view	group	(the	ScrollView),	and	use		wrap_content		for	the	LinearLayout's
	android:layout_height		attribute	to	make	the	view	group	only	big	enough	to	enclose	its	contents	and	padding.

Since	ScrollView	only	supports	vertical	scrolling,	you	must	set	the	LinearLayout	orientation	to	vertical	(by	using	the
	android:orientation="vertical"		attribute),	so	that	the	entire	LinearLayout	will	scroll	vertically.	For	example,	the	following
XML	layout	scrolls	the		article		TextView	along	with	the		article_subheading		TextView:

<ScrollView

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:layout_below="@id/article_heading">

			<LinearLayout

						android:layout_width="match_parent"

						android:layout_height="wrap_content"

						android:orientation="vertical">

						<TextView

									android:id="@+id/article_subheading"

									android:layout_width="match_parent"

									android:layout_height="wrap_content"

									android:padding="@dimen/padding_regular"

									android:text="@string/article_subtitle"

									android:textAppearance="@android:style/TextAppearance"	/>

						<TextView

									android:id="@+id/article"

									android:layout_width="wrap_content"

									android:layout_height="wrap_content"

									android:autoLink="web"

									android:lineSpacingExtra="@dimen/line_spacing"

									android:text="@string/article_text"	/>

			</LinearLayout>

</ScrollView>

1.3:	Text	and	Scrolling	Views

53

<ScrollView

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:layout_below="@id/article_heading">

			<LinearLayout

						android:layout_width="match_parent"

						android:layout_height="wrap_content"

						android:orientation="vertical">

						<TextView

									android:id="@+id/article_subheading"

									android:layout_width="match_parent"

									android:layout_height="wrap_content"

									android:padding="@dimen/padding_regular"

									android:text="@string/article_subtitle"

									android:textAppearance="@android:style/TextAppearance"	/>

						<TextView

									android:id="@+id/article"

									android:layout_width="wrap_content"

									android:layout_height="wrap_content"

									android:autoLink="web"

									android:lineSpacingExtra="@dimen/line_spacing"

									android:text="@string/article_text"	/>

			</LinearLayout>

</ScrollView>

Related	practicals
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Working	with	TextView	Elements

Learn	more
Android	Studio	documentation:

Meet	Android	Studio
Android	Studio	User	Guide

Android	API	Guide,	"Develop"	section:
TextView
ScrollView
String	Resources
View
Relative	Layout

Material	Design:
Style
Using	the	Material	Theme

Other:
Android	Developers	Blog:	Linkify	your	Text!
Codepath:	Working	with	a	TextView

1.3:	Text	and	Scrolling	Views

54

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/13_p_working_with_textview_elements.html
https://developer.android.com/studio/intro/index.html
https://developer.android.com/studio/intro/index.html
http://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/guide/topics/resources/string-resource.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/layout/relative.html
https://material.google.com/style/color.html
https://developer.android.com/training/material/theme.html
http://android-developers.blogspot.com/2008/03/linkify-your-text.html
https://guides.codepath.com/android/Working-with-the-TextView

1.4:	Resources	to	Help	You	Learn
Contents:

Exploring	Android	developer	documentation
Watching	developer	videos
Exploring	code	samples	in	the	Android	SDK
Using	activity	templates
Browsing	the	Android	developer	blog
Other	sources	of	information
Related	practical

This	chapter	describes	resources	available	for	Android	developers,	and	how	to	use	them.

Exploring	Android	developer	documentation
The	best	place	to	learn	about	Android	development	and	to	keep	informed	about	the	newest	Android	development	tools	is	to
browse	the	official	Android	developer	documentation.

developer.android.com

Home	page

This	documentation	contains	a	wealth	of	information	kept	current	by	Google.	To	start	exploring,	click	the	following	links	on
the	home	page:

Get	Android	Studio:	Download	Android	Studio,	the	official	integrated	development	environment	(IDE)	for	building
Android	apps.
Browse	sample	code:	Browse	the	sample	code	library	in	GitHub	to	learn	how	to	build	different	components	for	your
apps.	Click	the	categories	in	the	left	column	to	browse	the	available	samples.	Each	sample	is	a	fully	functioning
Android	app.	You	can	browse	the	resources	and	source	files,	and	see	the	overall	project	structure.	Copy	and	paste	the
code	you	need,	and	if	you	want	to	share	a	link	to	a	specific	line	you	can	double-click	it	to	the	get	the	URL.	For	more
sample	code,	see	"Exploring	code	samples	in	the	Android	SDK"	in	this	chapter.

1.4:	Resources	to	Help	You	Learn

55

http://developer.android.com/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/samples/index.html

Watch	stories:	Learn	about	other	Android	developers,	their	apps,	and	their	successes	with	Android	and	Google	Play.
The	page	offers	videos	and	articles	with	the	newest	stories	about	Android	development,	such	as	how	developers
improved	their	users	experiences,	and	how	to	increase	user	engagement	with	apps.

The	home	page	also	offers	links	for	Android	developers	to	preview	their	apps	for	the	newest	version	of	Android,	and	to	join
the	Google	Play	developer	program:

Developer	Console:	The	Google	Play	store	is	Google's	digital	distribution	system	for	apps	developed	with	the	Android
SDK.	On	the	Google	Play	Developer	Console	page	you	can	accept	the	Developer	Agreement,	pay	the	registration	fee,
and	complete	your	account	details	in	order	to	join	the	Google	Play	developer	program.
Preview:	Go	to	the	preview	page	for	the	newest	version	of	Android	to	test	your	apps	for	compatibility,	and	to	take
advantage	of	new	features	like	app	shortcuts,	image	keyboard	support,	circular	icons,	and	more.
Android,	Wear,	TV,	and	Auto:	Learn	about	the	newest	versions	of	Android	for	smartphones	and	tablets,	wearable
devices,	television,	and	automobiles.

Android	Studio	page

After	clicking	Get	Android	Studio	on	the	home	page,	the	Android	Studio	page,	shown	above,	appears	with	the	following
useful	links:

Download	Android	Studio:	Download	Android	Studio	for	the	computer	operating	system	you	are	currently	using.
Read	the	docs:	Browse	the	Android	Studio	documentation.
See	the	release	notes:	Read	the	release	notes	for	the	newest	version	of	Android	Studio.
Features:	Learn	about	the	features	of	the	newest	version	of	Android	Studio.
Latest:	Read	news	about	Android	Studio.
Resources:	Read	articles	about	using	Android	Studio,	including	a	basic	introduction.
Videos:	Watch	video	tutorials	about	using	Android	Studio.
Download	Options:	Download	a	version	of	Android	Studio	for	a	different	operating	system	than	the	one	you	are	using.

Android	Studio	documentation
The	following	are	links	into	the	Android	Studio	documentation	that	are	useful	for	this	training:

Meet	Android	Studio
Developer	Workflow	Basics
Projects	Overview
Create	App	Icons	with	Image	Asset	Studio

1.4:	Resources	to	Help	You	Learn

56

https://developer.android.com/distribute/stories/index.html
https://play.google.com/apps/publish/
https://developer.android.com/preview/index.html
https://developer.android.com/about/versions/nougat/index.html
https://developer.android.com/wear/index.html
https://developer.android.com/tv/index.html
https://developer.android.com/auto/index.html
https://developer.android.com/studio/index.html#mac-bundle
https://developer.android.com/studio/intro/index.html
https://developer.android.com/studio/releases/index.html
https://developer.android.com/studio/index.html#features
https://developer.android.com/studio/index.html#latest
https://developer.android.com/studio/index.html#resources
https://developer.android.com/studio/index.html#videos
https://developer.android.com/studio/index.html#downloads
https://developer.android.com/studio/intro/index.html
https://developer.android.com/studio/workflow.html
https://developer.android.com/studio/projects/index.html
http://developer.android.com/tools/help/image-asset-studio.html

Add	Multi-Density	Vector	Graphics
Create	and	Manage	Virtual	Devices
Android	Monitor	page
Debug	Your	App
Configure	Your	Build
Sign	Your	App

Design,	Develop,	Distribute,	and	Preview

The	Android	documentation	is	accessible	through	the	following	links	from	the	home	page:

Design:	This	section	covers	Material	Design,	which	is	a	conceptual	design	philosophy	that	outlines	how	apps	should
look	and	work	on	mobile	devices.	Use	the	following	links	to	learn	more:

Introducing	material	design:	An	introduction	to	the	material	design	philosophy.
Downloads	for	designers:	Download	color	palettes	for	compatibility	with	the	material	design	specification.
Articles:	Read	articles	and	news	about	Android	design.
Scroll	down	the	Design	page	for	links	to	resources	such	as	videos,	templates,	font,	and	color	palettes.
The	following	are	links	into	the	Design	section	that	are	useful	for	this	training:

Material	Design	Guidelines
Style
Using	the	Material	Theme
Components	-	Buttons
Dialogs	design	guide
Gestures	design	guide
Notification	Design	Guide
Icons	and	other	downloadable	resources
Design	-	Patterns	-	Navigation
Drawable	Resource	Guide
Styles	and	Themes	Guide
Settings
Material	Palette	Generator

Develop:	This	section	is	where	you	can	find	application	programming	interface	(API)	information,	reference
documentation,	tutorials,	tool	guides,	and	code	samples,	and	gain	insights	into	Android's	tools	and	libraries	to	speed
your	development.	You	can	use	the	site	navigation	links	in	the	left	column,	or	search	to	find	what	you	need.	The
following	are	popular	links	into	the	Develop	section	that	are	useful	for	this	training:

Overview:
Introduction	to	Android
Vocabulary	Glossary
Platform	Architecture
Android	Application	Fundamentals
UI	Overview
Platform	Versions
Android	Support	Library
Working	with	System	Permissions

Development	practices:
Supporting	Different	Platform	Versions
Supporting	Multiple	Screens
Supporting	Different	Densities
Best	Practices	for	Interaction	and	Engagement
Best	Practices	for	User	Interface
Best	Practices	for	Testing
Providing	Resources
Optimizing	Downloads	for	Efficient	Network	Access	Guide
Best	Practices	for	App	Permissions

1.4:	Resources	to	Help	You	Learn

57

https://developer.android.com/studio/write/vector-asset-studio.html
https://developer.android.com/studio/run/managing-avds.html
http://developer.android.com/tools/help/android-monitor.html
https://developer.android.com/studio/debug/index.html
https://developer.android.com/studio/build/index.html
https://developer.android.com/studio/publish/app-signing.html
http://developer.android.com/design/index.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/resources/color-palettes.html
https://google.com/design/articles/
https://www.google.com/design/spec/material-design/introduction.html
https://material.google.com/style/color.html
https://developer.android.com/training/material/theme.html
https://material.google.com/components/buttons.html
https://www.google.com/design/spec/components/dialogs.html
http://developer.android.com/design/patterns/gestures.html
https://developer.android.com/design/patterns/notifications.html
http://developer.android.com/design/downloads/index.html
https://www.google.com/design/spec/patterns/navigation.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/topics/ui/themes.html
https://material.google.com/patterns/settings.html
http://www.materialpalette.com/
http://developer.android.com/develop/index.html
https://developer.android.com/guide/index.html
https://developers.google.com/android/for-all/vocab-words/
https://developer.android.com/guide/platform/index.html
http://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/about/dashboards/index.html
https://developer.android.com/topic/libraries/support-library/
https://developer.android.com/training/permissions/index.html
https://developer.android.com/training/basics/supporting-devices/platforms.html
https://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/training/multiscreen/screendensities.html
http://developer.android.com/training/best-ux.html
http://developer.android.com/training/best-ui.html
https://developer.android.com/training/testing/index.html
https://developer.android.com/guide/topics/resources/providing-resources.html
https://developer.android.com/training/efficient-downloads/efficient-network-access.html
https://developer.android.com/training/articles/user-data-permissions.html

Articles	and	training	guides:
Starting	Another	Activity
Specifying	the	Input	Method	Type
Handling	Keyboard	Input
Adding	the	App	Bar
Using	Touch	Gestures
Creating	Lists	and	Cards
Getting	Started	with	Testing
Managing	the	Activity	Lifecycle
Connecting	to	the	Network
Managing	Network	Usage
Manipulating	Broadcast	Receivers	On	Demand
Scheduling	Repeating	Alarms
Transferring	Data	Without	Draining	the	Battery
Saving	Files
Saving	Key-Value	Sets
Saving	Data	in	SQL	Databases
Configuring	Auto	Backup	for	Apps
Working	with	System	Permissions

General	topics
Styles	and	Themes
Layouts
Menus
Intents	and	Intent	Filters
Processes	and	threads
Loaders
Services
Notifications
Storage	Options
Localizing	with	Resources
Content	Providers
Cursors
Backing	up	App	Data	to	the	Cloud
Settings
System	Permissions

Reference	information:
Support	Library
Android	standard	R.color	resources
App	Resources

Distribute:	This	section	provides	information	about	everything	that	happens	after	you've	written	your	app:	putting	it	on
the	Play	Store,	growing	your	user	base,	and	earning	money.

Google	Play
Essentials	for	a	Successful	App
Launch	Checklist

Installing	offline	documentation

To	access	to	documentation	even	when	you	are	not	connected	to	the	internet,	install	the	Software	Development	Kit	(SDK)
documentation	using	the	SDK	Manager.	Follow	these	steps:

1.	 Choose	Tools	>	Android	>	SDK	Manager.
2.	 In	the	left	column,	click	Android	SDK.
3.	 Select	and	copy	the	path	for	the	Android	SDK	Location	at	the	top	of	the	screen,	as	you	will	need	it	to	locate	the

documentation	on	your	computer:	

1.4:	Resources	to	Help	You	Learn

58

http://developer.android.com/training/basics/firstapp/starting-activity.html
http://developer.android.com/training/keyboard-input/style.html
https://developer.android.com/training/keyboard-input/style.html#Action
https://developer.android.com/training/appbar/index.html
https://developer.android.com/training/gestures/index.html
http://developer.android.com/training/material/lists-cards.html
https://developer.android.com/training/testing/start/index.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
https://developer.android.com/training/basics/network-ops/connecting.html
https://developer.android.com/training/basics/network-ops/managing.html
https://developer.android.com/training/monitoring-device-state/manifest-receivers.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/training/efficient-downloads/index.html
https://developer.android.com/training/basics/data-storage/files.html
https://developer.android.com/training/basics/data-storage/shared-preferences.html
http://developer.android.com/training/basics/data-storage/databases.html
https://developer.android.com/training/backup/autosyncapi.html
https://developer.android.com/training/permissions/index.html
http://developer.android.com/guide/topics/ui/themes.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/topics/ui/menus.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/loaders.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/topics/resources/localization.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/guide/topics/data/backup.html
https://developer.android.com/guide/topics/ui/settings.html
https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/tools/support-library/index.html
http://developer.android.com/reference/android/R.color.html
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/distribute/index.html
https://developer.android.com/distribute/monetize/index.html
https://developer.android.com/distribute/googleplay/index.html
https://developer.android.com/distribute/essentials/index.html
https://developer.android.com/distribute/tools/launch-checklist.html

4.	 Click	the	SDK	Tools	tab.	You	can	install	additional	SDK	Tools	that	are	not	installed	by	default,	as	well	as	an	offline
version	of	the	Android	developer	documentation.

5.	 Click	the	checkbox	for	"Documentation	for	Android	SDK"	if	it	is	not	already	installed,	and	click	Apply.
6.	 When	the	installation	finishes,	click	Finish.
7.	 Navigate	to	the	sdk	directory	you	copied	above,	and	open	the	docs	directory.
8.	 Find	index.html	and	open	it.

Watching	developer	videos
In	addition	to	the	Android	documentation,	the	Android	Developer	YouTube	channel	is	a	great	source	of	tutorials	and	tips.
You	can	subscribe	to	the	channel	to	receive	notifications	of	new	videos	by	email.	To	subscribe,	click	the	red	Subscribe
button	in	the	upper	right	corner	as	shown	below.	

The	following	are	popular	videos	referred	to	in	this	training:

Debugging	and	Testing	in	Android	Studio
Android	Testing	Support	-	Android	Testing	Patterns	#1
Android	Testing	Support	-	Android	Testing	Patterns	#2
Android	Testing	Support	-	Android	Testing	Patterns	#3
Threading	Performance	101
Good	AsyncTask	Hunting
Scheduling	Alarms	Presentation
RecyclerView	Animations	and	Behind	the	Scenes	(Android	Dev	Summit	2015)
Android	Application	Architecture:	The	Next	Billion	Users
Android	Performance	Patterns	Playlist

In	addition,	Udacity	offers	online	Android	development	courses.

1.4:	Resources	to	Help	You	Learn

59

https://www.youtube.com/user/androiddevelopers
https://www.youtube.com/watch?v=2I6fuD20qlY
https://youtu.be/W8LJjfkTKik
https://youtu.be/kL3MCQV2M2s
https://youtu.be/zi7v47kYKrk
https://www.youtube.com/watch?v=qk5F6Bxqhr4
https://www.youtube.com/watch?v=jtlRNNhane0
https://www.youtube.com/watch?v=7maNuWjL3Wc
https://www.youtube.com/watch?v=imsr8NrIAMs
https://www.youtube.com/watch?v=70WqJxymPr8
https://www.youtube.com/playlist?list=PLWz5rJ2EKKc9CBxr3BVjPTPoDPLdPIFCE
http://www.udacity.com/courses/android

Exploring	code	samples	in	the	Android	SDK
You	can	explore	hundreds	of	code	samples	directly	in	Android	Studio.	Choose	Import	an	Android	code	sample	from	the
Android	Studio	welcome	screen,	or	choose	File	>	New	>	Import	Sample	if	you	have	already	opened	a	project.	The	Browse
Samples	window	appears	as	shown	below.

Choose	a	sample	and	click	Next.	Accept	or	edit	the	Application	name	and	Project	location,	and	click	Finish.	The	app
project	appears	as	shown	below,	and	you	can	run	the	app	in	the	emulator	provided	with	Android	Studio,	or	on	a	connected
device.	

1.4:	Resources	to	Help	You	Learn

60

Note:	The	samples	are	meant	to	be	a	starting	point	for	further	development.	We	encourage	you	to	design	and	build	your
own	ideas	into	them.

Using	activity	templates
Android	Studio	provides	templates	for	common	and	recommended	activity	designs.	Using	templates	saves	time,	and	helps
you	follow	best	practices	for	developing	activities.

Each	template	incorporates	an	skeleton	activity	and	user	interface.	You	choose	an	activity	template	for	the	main	activity
when	starting	an	app	project.	You	can	also	add	an	activity	template	to	an	existing	project.	Right-click	the	java	folder	in	the
Project:	Android	view	and	choose	New	>	Activity	>	Gallery.	

1.4:	Resources	to	Help	You	Learn

61

Browsing	the	Android	developer	blog
The	Android	Developers	Blog	provides	a	wealth	of	articles	on	Android	development.

The	following	are	popular	blog	posts:

Android	Studio	2.2
Keeping	Android	safe:	Security	enhancements	in	Nougat
Connecting	your	App	to	a	Wi-Fi	Device
Linkify	your	Text!
Holo	Everywhere
Tips	to	help	you	stay	on	the	right	side	of	Google	Play	policy
5	Tips	to	help	you	improve	game-as-a-service	monetization

Other	sources	of	information
Google	and	third	parties	offer	a	wide	variety	of	helpful	tips	and	techniques	for	Android	development.	The	following	are
sources	of	information	referenced	by	this	training:

1.4:	Resources	to	Help	You	Learn

62

http://android-developers.blogspot.com/
http://android-developers.blogspot.com/2016/09/android-studio-2-2.html
http://android-developers.blogspot.com/2016/09/security-enhancements-in-nougat.html
http://android-developers.blogspot.com/2016/07/connecting-your-app-to-wi-fi-device.html
http://android-developers.blogspot.com/2008/03/linkify-your-text.html
http://android-developers.blogspot.com/2012/01/holo-everywhere.html
http://android-developers.blogspot.com/2016/10/tips-to-help-you-stay-on-right-side-of.html
http://android-developers.blogspot.com/2016/08/5-tips-to-help-you-improve-game-as-a-service-monetization.html

Google	Developer	Training:	Whether	you're	new	to	programming	or	an	experienced	developer,	Google	offers	a	range
of	online	courses	to	teach	you	Android	development,	from	getting	started	to	optimizing	app	performance.	Click	the
Android	tab	at	the	top	of	the	page.
Google	I/O	Codelabs:	Google	Developers	Codelabs	provide	a	guided	hands-on	coding	experience	on	a	number	of
topics.	Most	codelabs	will	step	you	through	the	process	of	building	a	small	app,	or	adding	a	new	feature	to	an	existing
app.	Choose	Android	from	the	Category	drop-down	menu	on	the	right	side	of	the	page.
Android	Testing	Codelab:	This	codelab	shows	you	how	to	get	started	with	testing	for	Android,	including	testing
integration	in	Android	Studio,	unit	testing,	hermetic	testing,	functional	user	interface	testing,	and	the	Espresso	testing
framework.
Google	Testing	Blog:	This	blog	is	focused	on	testing	code.	Blog	posts	referred	to	in	the	training	include:

Android	UI	Automated	Testing
Test	Sizes

Stack	Overflow:	Stack	Overflow	is	a	community	of	millions	of	programmers	helping	each	other.	If	you	run	into	a
problem,	chances	are	someone	else	has	already	posted	an	answer	on	this	forum.	Examples	referred	to	in	the	training
include:

How	to	assert	inside	a	RecyclerView	in	Espresso?
How	do	I	Add	A	Fragment	to	a	Custom	Navigation	Drawer	Template?
How	do	you	create	Preference	Activity	and	Preference	Fragment	on	Android?
How	to	use	SharedPreferences	in	Android	to	store,	fetch	and	edit	values
How	to	populate	AlertDialog	from	Arraylist?
onSavedInstanceState	vs.	SharedPreferences
Glide	vs.	Picasso

Google	on	GitHub:	GitHub	is	a	Git	repository	hosting	service.	It	offers	all	of	the	distributed	version	control	and	source
code	management	(SCM)	functionality	of	Git	as	well	as	adding	its	own	features.	Git	is	a	widely	used	version	control
system	for	software	development.	The	following	are	hosted	within	GitHub	and	referred	to	in	this	training:

Android	Testing	Samples
Android	Testing	Support	Library:	Espresso	basics
Android	Testing	Support	Library:	Espresso	cheat	sheet
Roman	Nurik's	Android	Asset	Studio
Source	code	for	exercises	on	GitHub

Miscellaneous	sources	of	information	referred	to	in	this	training:
Codepath:	Working	with	a	TextView
SQLite.org:	Full	description	of	the	Query	Language
Atomic	Object:	"Espresso	–	Testing	RecyclerViews	at	Specific	Positions"

Google	search:	Enter	a	question	into	the	Google	search	box,	prefaced	by	"Android"	to	narrow	your	search.	The
Google	search	engine	will	collect	relevant	results	from	all	of	these	resources.	For	example:

"What	is	the	most	popular	Android	OS	version	in	India?"	This	question	collects	results	about	Android	market
share,	including	the	Dashboards	page	that	provides	an	overview	of	device	characteristics	and	platform	versions
that	are	active	in	the	Android	ecosystem.
"Android	Settings	Activity"	collects	various	articles	about	the	Settings	Activity	including	the	Settings	topic	page,	the
PreferenceActivity	class,	and	Stack	Overflow's	How	do	you	create	Preference	Activity	and	Preference	Fragment
on	Android?
"Android	TextView"	collects	information	about	text	views	including	the	TextView	class,	the	View	class,	the	Layouts
topic	page,	and	code	samples	from	various	sources.
Preface	any	search	with	"Android"	to	narrow	your	search	to	Android-related	topics.	For	example,	you	can	search
for	any	Android	class	description,	such	as	"Android	TextView"	or	"Android	activity".

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Learning	About	Available	Resources

1.4:	Resources	to	Help	You	Learn

63

http://developers.google.com/training
http://codelabs.developers.google.com
https://codelabs.developers.google.com/codelabs/android-testing/index.html
https://testing.googleblog.com/
http://googletesting.blogspot.com/2015/03/android-ui-automated-testing.html
http://googletesting.blogspot.com/2010/12/test-sizes.html
http://stackoverflow.com/
http://stackoverflow.com/questions/31394569/how-to-assert-inside-a-recyclerview-in-espresso
http://stackoverflow.com/questions/32042821/how-do-i-add-a-fragment-to-a-custom-navigation-drawer-template
http://stackoverflow.com/questions/23523806/how-do-you-create-preference-activity-and-preference-fragment-on-android
http://stackoverflow.com/questions/3624280/how-to-use-sharedpreferences-in-android-to-store-fetch-and-edit-values
http://stackoverflow.com/questions/32020914/how-to-populate-alertdialog-from-arraylist
http://stackoverflow.com/questions/5901482/onsavedinstancestate-vs-sharedpreferences
http://stackoverflow.com/search?q=glide+vs.+picasso
https://github.com/google
https://www.atlassian.com/git/tutorials/what-is-git/
https://github.com/googlesamples/android-testing
https://google.github.io/android-testing-support-library/docs/espresso/basics/
https://google.github.io/android-testing-support-library/docs/espresso/cheatsheet/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
http://github.com/google-developer-training
https://guides.codepath.com/android/Working-with-the-TextView
https://www.sqlite.org/lang.html
https://spin.atomicobject.com/2016/04/15/espresso-testing-recyclerviews/
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/ui/settings.html
https://developer.android.com/reference/android/preference/PreferenceActivity.html
http://stackoverflow.com/questions/23523806/how-do-you-create-preference-activity-and-preference-fragment-on-android
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/14_p_learning_resources.html

1.4:	Resources	to	Help	You	Learn

64

2.1:	Understanding	Activities	and	Intents
Contents:

Introduction
About	activities
Creating	activities
About	intents
Starting	an	activity	with	an	explicit	intent
Passing	data	between	activities	with	intents
Getting	data	back	from	an	activity
Activity	navigation
Related	practical
Learn	more

In	this	chapter	you'll	learn	about	activities,	the	major	building	blocks	of	your	app's	user	interface,	as	well	as	using	intents	to
communicate	between	activities.

About	activities
An	activity	represents	a	single	screen	in	your	app	with	an	interface	the	user	can	interact	with.	For	example,	an	email	app
might	have	one	activity	that	shows	a	list	of	new	emails,	another	activity	to	compose	an	email,	and	another	activity	for
reading	individual	messages.	Your	app	is	a	collection	of	activities	that	you	either	create	yourself,	or	that	you	reuse	from
other	apps.

Although	the	activities	in	your	app	work	together	to	form	a	cohesive	user	experience	in	your	app,	each	one	is	independent
of	the	others.	This	enables	your	app	to	start	activities	in	other	apps,	and	other	apps	can	start	your	activities	(if	your	app
allows	it).	For	example,	a	messaging	app	you	write	could	start	an	activity	in	a	camera	app	to	take	a	picture,	and	then	start
the	activity	in	an	email	app	to	let	the	user	share	that	picture	in	email.

2.1:	Understanding	Activities	and	Intents

65

Typically,	one	activity	in	an	app	is	specified	as	the	"main"	activity,	which	is	presented	to	the	user	when	launching	the
application	for	the	first	time.	Each	activity	can	then	start	other	activities	in	order	to	perform	different	actions.

Each	time	a	new	activity	starts,	the	previous	activity	is	stopped,	but	the	system	preserves	the	activity	in	a	stack	(the	"back
stack").	When	the	user	is	done	with	the	current	activity	and	presses	the	Back	button,	it	is	popped	from	the	stack	(and
destroyed)	and	the	previous	activity	resumes.

When	an	activity	is	stopped	because	a	new	activity	starts,	the	first	activity	is	notified	of	that	change	with	the	activity's
lifecycle	callback	methods.	The	Activity	lifecycle	is	the	set	of	states	an	activity	can	be	in,	from	when	it	is	first	created,	to
each	time	it	is	stopped	or	resumed,	to	when	the	system	destroys	it.	You'll	learn	more	about	the	activity	lifecycle	in	the	next
chapter.

Creating	activities
To	implement	an	activity	in	your	app,	do	the	following:

Create	an	activity	Java	class.
Implement	a	user	interface	for	that	activity.
Declare	that	new	activity	in	the	app	manifest.

When	you	create	a	new	project	for	your	app,	or	add	a	new	activity	to	your	app,	in	Android	Studio	(with	File	>	New	>
Activity),	template	code	for	each	of	these	tasks	is	provided	for	you.

Create	the	activity	class

Activities	are	subclasses	of	the	Activity	class,	or	one	of	its	subclasses.	When	you	create	a	new	project	in	Android	Studio,
your	activities	are,	by	default,	subclasses	of	the	AppCompatActivity	class.	The	AppCompatActivity	class	is	a	subclass	of
Activity	that	lets	you	to	use	up-to-date	Android	app	features	such	as	the	action	bar	and	material	design,	while	still	enabling

2.1:	Understanding	Activities	and	Intents

66

your	app	to	be	compatible	with	devices	running	older	versions	of	Android.

Here	is	a	skeleton	subclass	of	AppCompatActivity:

public	class	MainActivity	extends	AppCompatActivity	{

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

			}

}

The	first	task	for	you	in	your	activity	subclass	is	to	implement	the	standard	activity	lifecycle	callback	methods	(such	as
OnCreate())	to	handle	the	state	changes	for	your	activity.	These	state	changes	include	things	such	as	when	the	activity	is
created,	stopped,	resumed,	or	destroyed.	You'll	learn	more	about	the	activity	lifecycle	and	lifecycle	callbacks	in	the	next
chapter.

The	one	required	callback	your	app	must	implement	is	the	onCreate()	method.	The	system	calls	this	method	when	it
creates	your	activity,	and	all	the	essential	components	of	your	activity	should	be	initialized	here.	Most	importantly,	the
OnCreate()	method	calls	setContentView()	to	create	the	primary	layout	for	the	activity.

You	typically	define	the	user	interface	for	your	activity	in	one	or	more	XML	layout	files.	When	the	setContentView()	method
is	called	with	the	path	to	a	layout	file,	the	system	creates	all	the	initial	views	from	the	specified	layout	and	adds	them	to	your
activity.	This	is	often	referred	to	as	inflating	the	layout.

You	may	often	also	want	to	implement	the	onPause()	method	in	your	activity	class.	The	system	calls	this	method	as	the	first
indication	that	the	user	is	leaving	your	activity	(though	it	does	not	always	mean	the	activity	is	being	destroyed).	This	is
usually	where	you	should	commit	any	changes	that	should	be	persisted	beyond	the	current	user	session	(because	the	user
might	not	come	back).	You'll	learn	more	about	onPause()	and	all	the	other	lifecycle	callbacks	in	the	next	chapter.

In	addition	to	lifecycle	callbacks,	you	may	also	implement	methods	in	your	activity	to	handle	other	behavior	such	as	user
input	or	button	clicks.

Implement	a	user	interface
the	user	interface	for	an	activity	is	provided	by	a	hierarchy	of	views,	which	controls	a	particular	space	within	the	activity's
window	and	can	respond	to	user	interaction.

The	most	common	way	to	define	a	user	interface	using	views	is	with	an	XML	layout	file	stored	as	part	of	your	app's
resources.	Defining	your	layout	in	XML	enables	you	to	maintain	the	design	of	your	user	interface	separately	from	the
source	code	that	defines	the	activity's	behavior.

You	can	also	create	new	views	directly	in	your	activity	code	by	inserting	new	view	objects	into	a	ViewGroup,	and	then
passing	the	root	ViewGroup	to	setContentView().	After	your	layout	has	been	inflated	--	regardless	of	its	source	--	you	can
add	more	views	in	Java	anywhere	in	the	view	hierarchy.

Declare	the	activity	in	the	manifest
Each	activity	in	your	app	must	be	declared	in	the	Android	app	manifest	with	the		<activity>		element,	inside
	<application>	.	When	you	create	a	new	project	or	add	a	new	activity	to	your	project	in	Android	Studio,	your	manifest	is
created	or	updated	to	include	skeleton	activity	declarations	for	each	activity.	Here's	the	declaration	for	the	main	activity.

<activity	android:name=".MainActivity"	>

			<intent-filter>

						<action	android:name="android.intent.action.MAIN"	/>

						<category	android:name="android.intent.category.LAUNCHER"	/>

			</intent-filter>

</activity>

2.1:	Understanding	Activities	and	Intents

67

The		<activity>		element	includes	a	number	of	attributes	to	define	properties	of	the	activity	such	as	its	label,	icon,	or
theme.	The	only	required	attribute	is	android:name,	which	specifies	the	class	name	for	the	activity	(such	as	"MainActivity").
See	the		<activity>		element	reference	for	more	information	on	activity	declarations.

The		<activity>		element	can	also	include	declarations	for	intent	filters.	The	intent	filters	specify	the	kind	of	intents	your
activity	will	accept.

	<intent-filter>

			<action	android:name="android.intent.action.MAIN"	/>

			<category	android:name="android.intent.category.LAUNCHER"	/>

</intent-filter>

Intent	filters	must	include	at	least	one		<action>		element,	and	can	also	include	a		<category>		and	optional		<data>	.	The
main	activity	for	your	app	needs	an	intent	filter	that	defines	the	"main"	action	and	the	"launcher"	category	so	that	the	system
can	launch	your	app.	Android	Studio	creates	this	intent	filter	for	the	main	activity	in	your	project:

The		<action>		element	specifies	that	this	is	the	"main"	entry	point	to	the	application.	The		<category>		element	specifies
that	this	activity	should	be	listed	in	the	system's	application	launcher	(to	allow	users	to	launch	this	activity).

Other	activities	in	your	app	can	also	declare	intent	filters,	but	only	your	main	activity	should	include	the	"main"	action..	You'll
learn	more	about	implicit	intents	and	intent	filters	in	a	later	section.

Add	more	activities	to	your	project
The	main	activity	for	your	app	and	its	associated	layout	file	comes	with	your	project	when	you	create	it.	You	can	add	new
activities	to	your	project	in	Android	Studio	with	the	File	>	New	>	Activity	menu.	Choose	the	activity	template	you	want	to
use,	or	open	the	Gallery	to	see	all	the	available	templates.	

When	you	choose	an	activity	template,	you'll	see	the	same	set	of	screens	for	creating	the	new	activity	that	you	did	when
you	initially	created	the	project.	Android	Studio	provides	these	three	things	for	each	new	activity	in	your	app:

A	Java	file	for	the	new	activity	with	a	skeleton	class	definition	and	onCreate()	method.	The	new	activity,	like	the	main
activity,	is	a	subclass	of	AppCompatActivity.
An	XML	file	containing	the	layout	for	the	new	activity.	Note	that	the	setContentView()	method	in	the	activity	class

2.1:	Understanding	Activities	and	Intents

68

https://developer.android.com/guide/topics/manifest/activity-element.html

inflates	this	new	layout.
An	additional		<activity>		element	in	the	Android	manifest	that	specifies	the	new	activity.	The	second	activity	definition
does	not	include	any	intent	filters.	If	you	intend	to	use	this	activity	only	within	your	app	(and	not	enable	that	activity	to
be	started	by	any	other	app),	you	do	not	need	to	add	filters.

About	intents
All	Android	activities	are	started	or	activated	with	an	intent.	Intents	are	message	objects	that	make	a	request	to	the	Android
runtime	to	start	an	activity	or	other	app	component	in	your	app	or	in	some	other	app.	You	don't	start	those	activities
yourself;

When	your	app	is	first	started	from	the	device	home	screen,	the	Android	runtime	sends	an	intent	to	your	app	to	start	your
app's	main	activity	(the	one	defined	with	the	MAIN	action	and	the	LAUNCHER	category	in	the	Android	Manifest).	To	start
other	activities	in	your	app,	or	request	that	actions	be	performed	by	some	other	activity	available	on	the	device,	you	build
your	own	intents	with	the	Intent	class	and	call	the	startActivity()	method	to	send	that	intent.

In	addition	to	starting	activities,	intents	are	also	used	to	pass	data	between	activities.	When	you	create	an	intent	to	start	a
new	activity,	you	can	include	information	about	the	data	you	want	that	new	activity	to	operate	on.	So,	for	example,	an	email
activity	that	displays	a	list	of	messages	can	send	an	intent	to	the	activity	that	displays	that	message.	The	display	activity
needs	data	about	the	message	to	display,	and	you	can	include	that	data	in	the	intent.

In	this	chapter	you'll	learn	about	using	intents	with	activities,	but	intents	are	also	used	to	start	services	and	broadcast
receivers.	You'll	learn	about	both	those	app	components	later	on	in	the	book.

Intent	types

There	are	two	types	of	intents	in	Android:

Explicit	intents	specify	the	receiving	activity	(or	other	component)	by	that	activity's	fully-qualified	class	name.	Use	an
explicit	intent	to	start	a	component	in	your	own	app	(for	example,	to	move	between	screens	in	the	user	interface),
because	you	already	know	the	package	and	class	name	of	that	component.
Implicit	intents	do	not	specify	a	specific	activity	or	other	component	to	receive	the	intent.	Instead	you	declare	a	general
action	to	perform	in	the	intent.	The	Android	system	matches	your	request	to	an	activity	or	other	component	that	can
handle	your	requested	action.	You'll	learn	more	about	implicit	intents	in	a	later	chapter.

Intent	objects	and	fields
An	Intent	object	is	an	instance	of	the	Intent	class.	For	explicit	intents,	the	key	fields	of	an	intent	include	the	following:

The	activity	class	(for	explicit	intents).	This	is	the	class	name	of	the	activity	or	other	component	that	should	receive	the
intent,	for	example,	com.example.SampleActivity.class.	Use	the	intent	constructor	or	the	intent's	setComponent(),
setComponentName()	or	setClassName()	methods	to	specify	the	class.
The	intent	data.	The	intent	data	field	contains	a	reference	to	the	data	you	want	the	receiving	activity	to	operate	on,	as	a
Uri	object.
Intent	extras.	These	are	key-value	pairs	that	carry	information	the	receiving	activity	requires	to	accomplish	the
requested	action.
Intent	flags.	These	are	additional	bits	of	metadata,	defined	by	the	Intent	class.	The	flags	may	instruct	the	Android
system	how	to	launch	an	activity	or	how	to	treat	it	after	it's	launched.

For	implicit	intents,	you	may	need	to	also	define	the	intent	action	and	category.	You'll	learn	more	about	intent	actions	and
categories	in	section	2.3.

Starting	an	activity	with	an	explicit	intent

2.1:	Understanding	Activities	and	Intents

69

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#setFlags%28int%29

To	start	a	specific	activity	from	another	activity,	use	an	explicit	intent	and	the	startActivity()	method.	Explicit	intents	include
the	fully-qualified	class	name	for	the	activity	or	other	component	in	the	Intent	object.	All	the	other	intent	fields	are	optional,
and	null	by	default.

For	example,	if	you	wanted	to	start	the	ShowMessageActivity	to	show	a	specific	message	in	an	email	app,	use	code	like
this.

Intent	messageIntent	=	new	Intent(this,	ShowMessageActivity.class);

startActivity(messageIntent);

The	Intent	constructor	takes	two	arguments	for	an	explicit	intent.

An	application	context.	In	this	example,	the	activity	class	provides	the	content	(here,		this).
The	specific	component	to	start	(ShowMessageActivity.class).

Use	the	startActivity()	method	with	the	new	intent	object	as	the	only	argument.	The	startActivity()	method	sends	the	intent
to	the	Android	system,	which	launches	the	ShowMessageActivity	class	on	behalf	of	your	app.	The	new	activity	appears	on
the	screen,	and	the	originating	activity	is	paused.

The	started	activity	remains	on	the	screen	until	the	user	taps	the	back	button	on	the	device,	at	which	time	that	activity
closes	and	is	reclaimed	by	the	system,	and	the	originating	activity	is	resumed.	You	can	also	manually	close	the	started
activity	in	response	to	a	user	action	(such	as	a	button	click)	with	the	finish()	method:

public	void	closeActivity	(View	view)	{

				finish();

}

Passing	data	between	activities	with	intents
In	addition	to	simply	starting	one	activity	from	another,	you	also	use	intents	to	pass	information	between	activities.	The
intent	object	you	use	to	start	an	activity	can	include	intent	data	(the	URI	of	an	object	to	act	on),	or	intent	extras,	which	are
bits	of	additional	data	the	activity	might	need.

In	the	first	(sending)	activity,	you:

1.	 Create	the	Intent	object.
2.	 Put	data	or	extras	into	that	intent.
3.	 Start	the	new	activity	with	startActivity().

In	the	second	(receiving)	activity,	you:

1.	 Get	the	intent	object	the	activity	was	started	with.
2.	 Retrieve	the	data	or	extras	from	the	Intent	object.

When	to	use	intent	data	or	intent	extras

You	can	use	either	intent	data	and	intent	extras	to	pass	data	between	the	activities.	There	are	several	key	differences
between	data	and	extras	that	determine	which	you	should	use.

The	intent	data	can	hold	only	one	piece	of	information.	A	URI	representing	the	location	of	the	data	you	want	to	operate	on.
That	URI	could	be	a	web	page	URL	(http://),	a	telephone	number	(tel://),	a	goegraphic	location	(geo://)	or	any	other	custom
URI	you	define.

Use	the	intent	data	field:

When	you	only	have	one	piece	of	information	you	need	to	send	to	the	started	activity.
When	that	information	is	a	data	location	that	can	be	represented	by	a	URI.

2.1:	Understanding	Activities	and	Intents

70

Intent	extras	are	for	any	other	arbitrary	data	you	want	to	pass	to	the	started	activity.	Intent	extras	are	stored	in	a	Bundle
object	as	key	and	value	pairs.	Bundles	are	a	map,	optimized	for	Android,	where	the	keys	are	strings,	and	the	values	can	be
any	primitive	or	object	type	(objects	must	implement	the	Parcelable	interface).	To	put	data	into	the	intent	extras	you	can	use
any	of	the	Intent	class's	putExtra()	methods,	or	create	your	own	bundle	and	put	it	into	the	intent	with	putExtras().

Use	the	intent	extras:

If	you	want	to	pass	more	than	one	piece	of	information	to	the	started	activity.
If	any	of	the	information	you	want	to	pass	is	not	expressible	by	a	URI.

Intent	data	and	extras	are	not	exclusive;	you	can	use	data	for	a	URI	and	extras	for	any	additional	information	the	started
activity	needs	to	process	the	data	in	that	URI.

Add	data	to	the	intent

To	add	data	to	an	explicit	intent	from	the	originating	activity,	create	the	intent	object	as	you	did	before:

Intent	messageIntent	=	new	Intent(this,	ShowMessageActivity.class);

Use	the	setData()	method	with	a	Uri	object	to	add	that	URI	to	the	intent.	Some	examples	of	using	setData()	with	URIs:

//	A	web	page	URL

messageIntent.setData(Uri.parse("http://www.google.com"));

//	a	Sample	file	URI

messageIntent.setData(Uri.fromFile(new	File("/sdcard/sample.jpg")));

//	A	sample	content:	URI	for	your	app's	data	model

messageIntent.setData(Uri.parse("content://mysample.provider/data"));

//	Custom	URI

messageIntent.setData(Uri.parse("custom:"	+	dataID	+	buttonId));

Keep	in	mind	that	the	data	field	can	only	contain	a	single	URI;	if	you	call	setData()	multiple	times	only	the	last	value	is	used.
Use	intent	extras	to	include	additional	information	(including	URIs.)

After	you've	added	the	data,	you	can	start	the	activity	with	the	intent	as	usual.

startActivity(messageIntent);

Add	extras	to	the	intent

To	add	intent	extras	to	an	explicit	intent	from	the	originating	activity:

1.	 Determine	the	keys	to	use	for	the	information	you	want	to	put	into	the	extras,	or	define	your	own.	Each	piece	of
information	needs	its	own	unique	key.

2.	 Use	the	putExtra()	methods	to	add	your	key/value	pairs	to	the	intent	extras.	Optionally	you	can	create	a	Bundle	object,
add	your	data	to	the	bundle,	and	then	add	the	bundle	to	the	intent.

The	Intent	class	includes	several	intent	extra	keys	you	can	use,	defined	as	constants	that	begin	with	the	word	EXTRA_.	For
example,	you	could	use	Intent.EXTRA_EMAIL	to	indicate	an	array	of	email	addresses	(as	strings),	or
Intent.EXTRA_REFERRER	to	specify	information	about	the	originating	activity	that	sent	the	intent.

You	can	also	define	your	own	intent	extra	keys.	Conventionally	you	define	intent	extra	keys	as	static	variables	with	names
that	begin	with	EXTRA_.	To	guarantee	that	the	key	is	unique,	the	string	value	for	the	key	itself	should	be	prefixed	with	your
app's	fully	qualified	class	name.	For	example:

public	final	static	String	EXTRA_MESSAGE	=	"com.example.mysampleapp.MESSAGE";

public	final	static	String	EXTRA_POSITION_X	=	"com.example.mysampleapp.X";

public	final	static	String	EXTRA_POSITION_Y	=	"com.example.mysampleapp.Y";

Create	an	intent	object	(if	one	does	not	already	exist):

2.1:	Understanding	Activities	and	Intents

71

https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/os/Parcelable.html

Intent	messageIntent	=	new	Intent(this,	ShowMessageActivity.class);

Use	a	putExtra()	method	with	a	key	to	put	data	into	the	intent	extras.	The	Intent	class	defines	many	putExtra()	methods	for
different	kinds	of	data:

messageIntent.putExtra(EXTRA_MESSAGE,	"this	is	my	message");

messageIntent.putExtra(EXTRA_POSITION_X,	100);

messageIntent.putExtra(EXTRA_POSITION_Y,	500);

Alternately,	you	can	create	a	new	bundle	and	populate	that	bundle	with	your	intent	extras.	Bundle	defines	many	"put"
methods	for	different	kinds	of	primitive	data	as	well	as	objects	that	implement	Android's	Parcelable	interface	or	Java's
Serializable.

Bundle	extras	=	new	Bundle();

extras.putString(EXTRA_MESSAGE,	"this	is	my	message");

extras.putInt(EXTRA_POSITION_X,	100);

extras.putInt(EXTRA_POSITION_Y,	500);

After	you've	populated	the	bundle,	add	it	to	the	intent	with	the	putExtras()	method	(note	the	"s"	in	Extras):

messageIntent.putExtras(extras);

Start	the	activity	with	the	intent	as	usual:

startActivity(messageIntent);

Retrieve	the	data	from	the	intent	in	the	started	activity

When	you	start	an	activity	with	an	intent,	the	started	activity	has	access	to	the	intent	and	the	data	it	contains.

To	retrieve	the	intent	the	activity	(or	other	component)	was	started	with,	use	the	getIntent()	method:

Intent	intent	=	getIntent();

Use	getData()	to	get	the	URI	from	that	intent:

Uri	locationUri	=	getData();

To	get	the	extras	out	of	the	intent,	you'll	need	to	know	the	keys	for	the	key/value	pairs.	You	can	use	the	standard	Intent
extras	if	you	used	those,	or	you	can	use	the	keys	you	defined	in	the	originating	activity	(if	they	were	defined	as	public.)

Use	one	of	the	getExtra()	methods	to	extract	extra	data	out	of	the	intent	object:

String	message	=	intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

int	positionX	=	intent.getIntExtra(MainActivity.EXTRA_POSITION_X);

int	positionY	=	intent.getIntExtra(MainActivity.EXTRA_POSITION_Y);

Or	you	can	get	the	entire	extras	bundle	from	the	intent	and	extract	the	values	with	the	various	Bundle	methods:

Bundle	extras	=	intent.getExtras();

String	message	=	extras.getString(MainActivity.EXTRA_MESSAGE);

Getting	data	back	from	an	activity

2.1:	Understanding	Activities	and	Intents

72

https://developer.android.com/reference/android/os/Parcelable.html
https://developer.android.com/reference/java/io/Serializable.html

When	you	start	an	activity	with	an	intent,	the	originating	activity	is	paused,	and	the	new	activity	remains	on	the	screen	until
the	user	clicks	the	back	button,	or	you	call	the	finish()	method	in	a	click	handler	or	other	function	that	ends	the	user's
involvement	with	this	activity.

Sometimes	when	you	send	data	to	an	activity	with	an	intent,	you	would	like	to	also	get	data	back	from	that	intent.	For
example,	you	might	start	a	photo	gallery	activity	that	lets	the	user	pick	a	photo.	In	this	case	your	original	activity	needs	to
receive	information	about	the	photo	the	user	chose	back	from	the	launched	activity.

To	launch	a	new	activity	and	get	a	result	back,	do	the	following	steps	in	your	originating	activity:

1.	 Instead	of	launching	the	activity	with	startActivity(),	call	startActivityForResult()	with	the	intent	and	a	request	code.
2.	 Create	a	new	intent	in	the	launched	activity	and	add	the	return	data	to	that	intent.
3.	 Implement	onActivityResult()	in	the	originating	activity	to	process	the	returned	data.

You'll	learn	about	each	of	these	steps	in	the	following	sections.

Use	startActivityForResult()	to	launch	the	activity
To	get	data	back	from	a	launched	activity,	start	that	activity	with	the	startActivityForResult()	method	instead	of	startActivity().

startActivityForResult(messageIntent,	TEXT_REQUEST);

The	startActivityForResult()	method,	like	startActivity(),	takes	an	intent	argument	that	contains	information	about	the	activity
to	be	launched	and	any	data	to	send	to	that	activity.	The	startActivityForResult()	method,	however,	also	needs	a	request
code.

The	request	code	is	an	integer	that	identifies	the	request	and	can	be	used	to	differentiate	between	results	when	you
process	the	return	data.	For	example,	if	you	launch	one	activity	to	take	a	photo	and	another	to	pick	a	photo	from	a	gallery,
you'll	need	different	request	codes	to	identify	which	request	the	returned	data	belongs	to.

Conventionally	you	define	request	codes	as	static	integer	variables	with	names	that	include	REQUEST.	Use	a	different
integer	for	each	code.	For	example:

public	static	final	int	PHOTO_REQUEST	=	1;

public	static	final	int	PHOTO_PICK_REQUEST	=	2;

public	static	final	int	TEXT_REQUEST	=	3;

Return	a	response	from	the	launched	activity

The	response	data	from	the	launched	activity	back	to	the	originating	activity	is	sent	in	an	intent,	either	in	the	data	or	the
extras.	You	construct	this	return	intent	and	put	the	data	into	it	in	much	the	same	way	you	do	for	the	sending	intent.	Typically
your	launched	activity	will	have	an	onClick	or	other	user	input	callback	method	in	which	you	process	the	user's	action	and
close	the	activity.	This	is	also	where	you	construct	the	response.

To	return	data	from	the	launched	activity,	create	a	new	empty	intent	object.

Intent	returnIntent	=	new	Intent();

Note:	To	avoid	confusing	sent	data	with	returned	data,	use	a	new	intent	object	rather	than	reusing	the	original	sending
intent	object.
Return	result	intents	do	not	need	a	class	or	component	name	to	end	up	in	the	right	place.	The	Android	system	directs	the
response	back	to	the	originating	activity	for	you.

Add	data	or	extras	to	the	intent	the	same	way	you	did	with	the	original	intent.	You	may	need	to	define	keys	for	the	return
intent	extras	at	the	start	of	your	class.

2.1:	Understanding	Activities	and	Intents

73

public	final	static	String	EXTRA_RETURN_MESSAGE	=

				"com.example.mysampleapp.RETURN_MESSAGE";

Then	put	your	return	data	into	the	intent	as	usual.	Here	the	return	message	is	an	intent	extra	with	the	key
EXTRA_RETURN_MESSAGE.

messageIntent.putExtra(EXTRA_RETURN_MESSAGE,	mMessage);

Use	the	setResult()	method	with	a	response	code	and	the	intent	with	the	response	data:

setResult(RESULT_OK,replyIntent);

The	response	codes	are	defined	by	the	Activity	class,	and	can	be

RESULT_OK.	the	request	was	successful.
RESULT_CANCELED:	the	user	cancelled	the	operation.
RESULT_FIRST_USER.	for	defining	your	own	result	codes.

You'll	use	the	result	code	in	the	originating	activity.

Finally,	call	finish()	to	close	the	activity	and	resume	the	originating	activity:

finish();

Read	response	data	in	onActivityResult()
Now	that	the	launched	activity	has	sent	data	back	to	the	originating	activity	with	an	intent,	that	first	activity	must	handle	that
data.	To	handle	returned	data	in	the	originating	activity,	implement	the	onActivityResult()	callback	method.	Here	is	a	simple
example.

public	void	onActivityResult(int	requestCode,	int	resultCode,		Intent	data)	{

				super.onActivityResult(requestCode,	resultCode,	data);

				if	(requestCode	==	TEXT_REQUEST)	{

								if	(resultCode	==	RESULT_OK)	{

												String	reply	=

																data.getStringExtra(SecondActivity.EXTRA_RETURN_MESSAGE);

																//	process	data

								}

				}

}

The	three	arguments	to	the	onActivityResult()	contain	all	the	information	you	need	to	handle	the	return	data.

Request	code.	The	request	code	you	set	when	you	launched	the	activity	with	startActivityForResult().	If	you	launch
different	activities	to	accomplish	different	operations,	use	this	code	to	identify	the	specific	data	you're	getting	back.
Result	code:	the	result	code	set	in	the	launched	activity,	usually	one	of	RESULT_OK	or	RESULT_CANCELED.
Intent	data.	the	intent	that	contains	the	data	returned	from	the	launch	activity.

The	example	method	shown	above	shows	the	typical	logic	for	handling	the	request	and	response	codes.	The	first	test	is	for
the	TEXT_REQUEST	request,	and	that	the	result	was	successful.	Inside	the	body	of	those	tests	you	extract	the	return
information	out	of	the	intent.	Use	getData()	to	get	the	intent	data,	or	getExtra()	to	retrieve	values	out	of	the	intent	extras	with
a	specific	key.

Activity	navigation

2.1:	Understanding	Activities	and	Intents

74

Any	app	of	any	complexity	that	you	build	will	include	multiple	activities,	both	designed	and	implemented	by	you,	and
potentially	in	other	apps	as	well.	As	your	users	move	around	your	app	and	between	activities,	consistent	navigation
becomes	more	important	to	the	app's	user	experience.	Few	things	frustrate	users	more	than	basic	navigation	that	behaves
in	inconsistent	and	unexpected	ways.	Thoughtfully	designing	your	app's	navigation	will	make	using	your	app	predictable
and	reliable	for	your	users.

Android	system	supports	two	different	forms	of	navigation	strategies	for	your	app.

Temporal	or	Back	navigation,	provided	by	the	device	back	button,	and	the	back	stack.
Ancestral,	or	Up	navigation,	provided	by	you	as	an	option	in	the	app's	action	bar.

Back	navigation,	tasks,	and	the	back	stack

Back	navigation	allows	your	users	to	return	to	the	previous	activity	by	tapping	the	device	back	button	 .	Back	navigation
is	also	called	temporal	navigation	because	the	back	button	navigates	the	history	of	recently	viewed	screens,	in	reverse
chronological	order.

The	back	stack	is	the	set	of	activities	that	the	user	has	visited	and	that	can	be	returned	to	by	the	user	with	the	back	button.
Each	time	a	new	activity	starts,	it	is	pushed	onto	the	back	stack	and	takes	user	focus.	The	previous	activity	is	stopped	but
is	still	available	in	the	back	stack.	The	back	stack	operates	on	a	"last	in,	first	out"	mechanism,	so	when	the	user	is	done	with
the	current	activity	and	presses	the	Back	button,	that	activity	is	popped	from	the	stack	(and	destroyed)	and	the	previous
activity	resumes.

Because	an	app	can	start	activities	both	inside	and	outside	a	single	app,	the	back	stack	contains	all	the	activities	that	have
been	launched	by	the	user	in	reverse	order.	Each	time	the	user	presses	the	Back	button,	each	activity	in	the	stack	is
popped	off	to	reveal	the	previous	one,	until	the	user	returns	to	the	Home	screen.	

2.1:	Understanding	Activities	and	Intents

75

In	most	cases	you	don't	have	to	worry	about	managing	either	tasks	or	the	back	stack	for	your	app—the	system	keeps	track
of	these	things	for	you,	and	the	back	button	is	always	available	on	the	device.

There	may,	however,	be	times	where	you	may	want	to	override	the	default	behavior	for	tasks	or	for	the	back	stack.	For
example,	if	your	screen	contains	an	embedded	web	browser	where	users	can	navigate	between	web	pages,	you	may	wish
to	use	the	browser's	default	back	behavior	when	users	press	the	device's	Back	button,	rather	than	returning	to	the	previous
activity.	You	may	also	need	to	change	the	default	behavior	for	your	app	in	other	special	cases	such	as	with	notifications	or
widgets,	where	activities	deep	within	your	app	may	be	launched	as	their	own	tasks,	with	no	back	stack	at	all.	You'll	learn
more	about	managing	tasks	and	the	back	stack	in	a	later	section.

Up	navigation
Up	navigation,	sometimes	referred	to	as	ancestral	or	logical	navigation,	is	used	to	navigate	within	an	app	based	on	the
explicit	hierarchical	relationships	between	screens.	With	Up	navigation,	your	activities	are	arranged	in	a	hierarchy,	and

"child"	activities	show	a	left-facing	arrow	in	the	action	bar	 	that	returns	the	user	to	the	"parent"	activity.	The	topmost
activity	in	the	hierarchy	is	usually	your	main	activity,	and	the	user	cannot	go	up	from	there.	

2.1:	Understanding	Activities	and	Intents

76

Up	navigation,	sometimes	referred	to	as	ancestral	or	logical	navigation,	is	used	to	navigate	within	an	app	based	on	the
explicit	hierarchical	relationships	between	screens.	With	Up	navigation,	your	activities	are	arranged	in	a	hierarchy,	and

"child"	activities	show	a	left-facing	arrow	in	the	action	bar	 	that	returns	the	user	to	the	"parent"	activity.	The	topmost
activity	in	the	hierarchy	is	usually	your	main	activity,	and	the	user	cannot	go	up	from	there.	

For	instance,	if	the	main	activity	in	an	email	app	is	a	list	of	all	messages,	selecting	a	message	launches	a	second	activity	to
display	that	single	email.	In	this	case	the	message	activity	would	provide	an	Up	button	that	returns	to	the	list	of	messages.

The	behavior	of	the	Up	button	is	defined	by	you	in	each	activity	based	on	how	you	design	your	app's	navigation.	In	many
cases,	Up	and	Back	navigation	may	provide	the	same	behavior:	to	just	return	to	the	previous	activity.	For	example,	a
Settings	activity	may	be	available	from	any	activity	in	your	app,	so	"up"	is	the	same	as	back	--	just	return	the	user	to	their
previous	place	in	the	hierarchy.

Providing	Up	behavior	for	your	app	is	optional,	but	a	good	design	practice,	to	provide	consistent	navigation	for	the	activities
in	your	app.

Implement	up	navigation	with	parent	activities

With	the	standard	template	projects	in	Android	Studio,	it's	straightforward	to	implement	Up	navigation.	If	one	activity	is	a
child	of	another	activity	in	your	app's	activity	hierarchy,	specify	that	activity's	parent	in	the	Android	Manifest.

Beginning	in	Android	4.1	(API	level	16),	declare	the	logical	parent	of	each	activity	by	specifying	the
android:parentActivityName	attribute	in	the		<activity>		element.	To	support	older	versions	of	Android,	include		<meta-
data>		information	to	define	the	parent	activity	explicitly.	Use	both	methods	to	be	backwards-compatible	with	all	versions	of
Android.

Here	are	the	skeleton	definitions	for	both	a	main	(parent)	activity	and	a	second	(child)	activity:

2.1:	Understanding	Activities	and	Intents

77

<application	...	>

				<!--	The	main/home	activity	(it	has	no	parent	activity)	-->

				<activity

								android:name=".MainActivity"	...>

								<intent-filter>

												<action	android:name="android.intent.action.MAIN"	/>

												<category	android:name="android.intent.category.LAUNCHER"	/>

								</intent-filter>

				</activity>

				<!--	A	child	of	the	main	activity	-->

				<activity	android:name=".SecondActivity"

								android:label="@string/activity2_name"

								android:parentActivityName=".MainActivity">

								<meta-data

												android:name="android.support.PARENT_ACTIVITY"

												android:value="com.example.android.twoactivities.MainActivity"	/>

				</activity>

</application>

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Create	and	Start	Activities

Learn	more
Android	Application	Fundamentals
Starting	Another	Activity
Activity	(API	Guide)
Activity	(API	Reference)
Intents	and	Intent	Filters	(API	Guide)
Intent	(API	Reference)

2.1:	Understanding	Activities	and	Intents

78

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/21_p_create_and_start_activities.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/training/basics/firstapp/starting-activity.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html

2.2:	The	Activity	Lifecycle	and	Managing	State
Contents:

Introduction
About	the	activity	lifecycle
Activity	states	and	lifecycle	callback	methods
Configuration	changes	and	activity	state
Related	Practical
Learn	More

In	this	chapter	you'll	learn	about	the	activity	lifecycle,	the	callback	events	you	can	implement	to	perform	tasks	in	each	stage
of	the	lifecycle,	and	how	to	handle	activity	instance	states	throughout	the	activity	lifecycle.

About	the	activity	lifecycle
The	activity	lifecycle	is	the	set	of	states	an	activity	can	be	in	during	its	entire	lifetime,	from	the	time	it	is	initially	created	to
when	it	is	destroyed	and	the	system	reclaims	that	activity's	resources.	As	the	user	interacts	with	your	app	and	other	apps
on	the	device,	the	different	activities	move	into	different	states.

For	example,	when	you	start	an	app,	the	app's	main	activity	(Activity	1)	is	started,	comes	to	the	foreground,	and	receives
the	user	focus.	When	you	start	a	second	activity	(Activity	2),	that	new	activity	is	also	created	and	started,	and	the	main
activity	is	stopped.	When	you're	done	with	the	second	activity	and	navigate	back,	the	first	activity	resumes.	The	second
activity	stops	and	is	no	longer	needed;	if	the	user	does	not	resume	the	second	activity,	it	is	eventually	destroyed	by	the
system.	

Activity	states	and	lifecycle	callback	methods
When	an	activity	transitions	into	and	out	of	the	different	lifecycle	states	as	it	runs,	the	Android	system	calls	several	lifecycle
callback	methods	at	each	stage.	All	of	the	callback	methods	are	hooks	that	you	can	override	in	each	of	your	Activity
classes	to	define	how	that	activity	behaves	when	the	user	leaves	and	re-enters	the	activity.	Keep	in	mind	that	the	lifecycle
states	(and	callbacks)	are	per	activity,	not	per	app,	and	you	may	implement	different	behavior	at	different	points	in	the
lifecycle	for	different	activities	in	your	app.

2.2:	The	Activity	Lifecycle	and	Managing	State

79

This	figure	shows	each	of	the	activity	states	and	the	callback	methods	that	occur	as	the	activity	transitions	between
different	states:	

Depending	on	the	complexity	of	your	activity,	you	probably	don't	need	to	implement	all	the	lifecycle	callback	methods	in
your	activities.	However,	it's	important	that	you	understand	each	one	and	implement	those	that	ensure	your	app	behaves
the	way	users	expect.	Managing	the	lifecycle	of	your	activities	by	implementing	callback	methods	is	crucial	to	developing	a
strong	and	flexible	application.

Activity	created	(onCreate()	method)

@Override

public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				//	The	activity	is	being	created.

}

Your	activity	enters	into	the	created	state	when	it	is	started	for	the	first	time.	When	an	activity	is	first	created	the	system
calls	the	onCreate()	method	to	initialize	that	activity.	For	example,	when	the	user	taps	your	app	icon	from	the	Home	screen
to	start	that	app,	the	system	calls	the	onCreate()	method	for	the	activity	in	your	app	that	you've	declared	to	be	the
"launcher"	or	"main"	activity.	In	this	case	the	main	activity's	onCreate()	method	is	analogous	to	the	main()	method	in	other
programs.

Similarly,	if	your	app	starts	another	activity	with	an	intent	(either	explicit	or	implicit),	the	system	matches	your	intent	request
with	an	activity	and	calls	onCreate()	for	that	new	activity.

The	onCreate()	method	is	the	only	required	callback	you	must	implement	in	your	activity	class.	In	your	onCreate()	method
you	perform	basic	application	startup	logic	that	should	happen	only	once,	such	as	setting	up	the	user	interface,	assigning
class-scope	variables,	or	setting	up	background	tasks.

Created	is	a	transient	state;	the	activity	remains	in	the	created	state	only	as	long	as	it	takes	to	run	onCreate(),	and	then	the
activity	moves	to	the	started	state.

Activity	started	(onStart()	method)

@Override

protected	void	onStart()	{

				super.onStart();

				//	The	activity	is	about	to	become	visible.

}

2.2:	The	Activity	Lifecycle	and	Managing	State

80

After	your	activity	is	initialized	with	onCreate(),	the	system	calls	the	onStart()	method,	and	the	activity	is	in	the	started	state.
The	onStart()	method	is	also	called	if	a	stopped	activity	returns	to	the	foreground,	such	as	when	the	user	clicks	the	back	or
up	buttons	to	navigate	to	the	previous	screen.	While	onCreate()	is	called	only	once	when	the	activity	is	created,	the
onStart()	method	may	be	called	many	times	during	the	lifecycle	of	the	activity	as	the	user	navigates	around	your	app.

When	an	activity	is	in	the	started	state	and	visible	on	the	screen,	the	user	cannot	interact	with	it	until	onResume()	is	called,
the	activity	is	running,	and	the	activity	is	in	the	foreground.

Typically	you	implement	onStart()	in	your	activity	as	a	counterpart	to	the	onStop()	method.	For	example,	if	you	release
hardware	resources	(such	as	GPS	or	sensors)	when	the	activity	is	stopped,	you	can	re-register	those	resources	in	the
onStart()	method.

Started,	like	created,	is	a	transient	state.	After	starting	the	activity	moves	into	the	resumed	(running)	state.

Activity	resumed/running	(onResume()	method)

@Override

protected	void	onResume()	{

				super.onResume();

				//	The	activity	has	become	visible	(it	is	now	"resumed").

}

Your	activity	is	in	the	resumed	state	when	it	is	initialized,	visible	on	screen,	and	ready	to	use.	The	resumed	state	is	often
called	the	running	state,	because	it	is	in	this	state	that	the	user	is	actually	interacting	with	your	app.

The	first	time	the	activity	is	started	the	system	calls	the	onResume()	method	just	after	onStart().	The	onResume()	method
may	also	be	called	multiple	times,	each	time	the	app	comes	back	from	the	paused	state.

As	with	the	onStart()	and	onStop()	methods,	which	are	implemented	in	pairs,	you	typically	only	implement	onResume()	as	a
counterpart	to	onPause().	For	example,	if	in	the	onPause()	method	you	halt	any	onscreen	animations,	you	would	start
those	animations	again	in	onResume().

The	activity	remains	in	the	resumed	state	as	long	as	the	activity	is	in	the	foreground	and	the	user	is	interacting	with	it.	From
the	resumed	state	the	activity	can	move	into	the	paused	state.

Activity	paused	(onPause()	method)

@Override

protected	void	onPause()	{

				super.onPause();

				//	Another	activity	is	taking	focus

				//	(this	activity	is	about	to	be	"paused").

}

The	paused	state	can	occur	in	several	situations:

The	activity	is	going	into	the	background,	but	has	not	yet	been	fully	stopped.	This	is	the	first	indication	that	the	user	is
leaving	your	activity.
The	activity	is	only	partially	visible	on	the	screen,	because	a	dialog	or	other	transparent	activity	is	overlaid	on	top	of	it.
In	multi-window	or	split	screen	mode	(API	24),	the	activity	is	displayed	on	the	screen,	but	some	other	activity	has	the
user	focus.

The	system	calls	the	onPause()	method	when	the	activity	moves	into	the	paused	state.	Because	the	onPause()	method	is
the	first	indication	you	get	that	the	user	may	be	leaving	the	activity,	you	can	use	onPause()	to	stop	animation	or	video
playback,	release	any	hardware-intensive	resources,	or	commit	unsaved	activity	changes	(such	as	a	draft	email).

The	onPause()	method	should	execute	quickly.	Don't	use	onPause()	for	for	CPU-intensive	operations	such	as	writing
persistent	data	to	a	database.	The	app	may	still	be	visible	on	screen	as	it	passed	through	the	paused	state,	and	any	delays
in	executing	onPause()	can	slow	the	user's	transition	to	the	next	activity.	Implement	any	heavy-load	operations	when	the

2.2:	The	Activity	Lifecycle	and	Managing	State

81

app	is	in	the	stopped	state	instead.

Note	that	in	multi-window	mode	(API	24),	your	paused	activity	may	still	fully	visible	on	the	screen.	In	this	case	you	do	not
want	to	pause	animations	or	video	playback	as	you	would	for	a	partially	visible	activity.	You	can	use	the
inMultiWindowMode()	method	in	the	Activity	class	to	test	whether	your	app	is	running	in	multiwindow	mode.

Your	activity	can	move	from	the	paused	state	into	the	resumed	state	(if	the	user	returns	to	the	activity)	or	to	the	stopped
state	(if	the	user	leaves	the	activity	altogether).

Activity	stopped	(onStop()	method)

@Override

protected	void	onStop()	{

				super.onStop();

				//	The	activity	is	no	longer	visible	(it	is	now	"stopped")

}

An	activity	is	in	the	stopped	state	when	it	is	no	longer	visible	on	the	screen	at	all.	This	is	usually	because	the	user	has
started	another	activity,	or	returned	to	the	home	screen.	The	system	retains	the	activity	instance	in	the	back	stack,	and	if
the	user	returns	to	that	activity	it	is	restarted	again.	Stopped	activities	may	be	killed	altogether	by	the	Android	system	if
resources	are	low.

The	system	calls	the	onStop()	method	when	the	activity	stops.	Implement	the	onStop()	method	to	save	any	persistent	data
and	release	any	remaining	resources	you	did	not	already	release	in	onPause(),	including	those	operations	that	may	have
been	too	heavyweight	for	onPause().

Activity	destroyed	(onDestroy()	method)

@Override

protected	void	onDestroy()	{

				super.onDestroy();

				//	The	activity	is	about	to	be	destroyed.

}

When	your	activity	is	destroyed	it	is	shut	down	completely,	and	the	Activity	instance	is	reclaimed	by	the	system.	This	can
happen	in	several	cases:

You	call	finish()	in	your	activity	to	manually	shut	it	down.
The	user	navigates	back	to	the	previous	activity.
The	device	is	in	a	low	memory	situation	where	the	system	reclaims	stopped	activities	to	free	more	resources.
A	device	configuration	change	occurs.	You'll	learn	more	about	configuration	changes	later	in	this	chapter.

Use	onDestroy()	to	fully	clean	up	after	your	activity	so	that	no	component	(such	as	a	thread)	is	running	after	the	activity	is
destroyed.

Note	that	there	are	situations	where	the	system	will	simply	kill	the	activity's	hosting	process	without	calling	this	method	(or
any	others),	so	you	should	not	rely	on	onDestroy()	to	save	any	required	data	or	activity	state.	Use	onPause()	or	onStop()
instead.

Activity	restarted	(onRestart()	method)

@Override

protected	void	onRestart()	{

				super.onRestart();

				//	The	activity	is	about	to	be	restarted.

}

2.2:	The	Activity	Lifecycle	and	Managing	State

82

The	restarted	state	is	a	transient	state	that	only	occurs	if	a	stopped	activity	is	started	again.	In	this	case	the	onRestart()
method	is	called	in	between	onStop()	and	onStart().	If	you	have	resources	that	need	to	be	stopped	or	started	you	typically
implement	that	behavior	in	onStop()	or	onStart()	rather	than	onRestart().

Configuration	changes	and	activity	state
Earlier	in	the	section	onDestroy()	you	learned	that	your	activities	may	be	destroyed	when	the	user	navigates	back,	by	you
with	the	finish()	method,	or	by	the	system	when	it	needs	to	free	resources.	The	fourth	time	your	activities	are	destroyed	is
when	the	device	undergoes	a	configuration	change.

Configuration	changes	occur	on	the	device,	in	runtime,	and	invalidate	the	current	layout	or	other	resources	in	your	activity
The	most	common	form	of	a	configuration	change	is	when	the	device	is	rotated.	When	the	device	rotates	from	portrait	to
landscape,	or	vice	versa,	the	layout	for	your	app	also	needs	to	change.	The	system	recreates	the	activity	to	help	that
activity	adapt	to	the	new	configuration	by	loading	alternative	resources	(such	as	a	landscape-specific	layout).

Other	configuration	changes	can	include	a	change	in	locale	(the	user	chooses	a	different	system	language),	or	the	user
enters	multi-window	mode	(Android	7).	In	multi-window	mode,	if	you	have	configured	your	app	to	be	resizeable,	Android
recreates	your	activities	to	use	a	layout	definition	for	the	new,	smaller	activity	size.

When	a	configuration	change	occurs	Android	system	shuts	down	your	activity	(calling	onPause(),	onStop(),	and
onDestroy()),	and	then	starts	it	over	again	from	the	start	(calling	onCreate(),	onStart(),	and	onResume()).

Activity	instance	state

When	an	activity	is	destroyed	and	recreated,	there	are	implications	for	the	runtime	state	of	that	activity.	When	an	activity	is
paused	or	stopped,	the	state	of	the	activity	is	retained	because	that	activity	is	still	held	in	memory.	When	an	activity	is
recreated,	the	state	of	the	activity	and	any	user	progress	in	that	activity	is	lost,	with	these	exceptions:

Some	activity	state	information	is	automatically	saved	by	default.	The	state	of	views	in	your	layout	with	a	unique	ID	(as
defined	by	the	android:id	attribute	in	the	layout)	are	saved	and	restored	when	an	activity	is	recreated.	In	this	case,	the
user-entered	values	in	EditText	views	are	usually	retained	when	the	activity	is	recreated.
The	intent	that	was	used	to	start	the	activity,	and	the	information	stored	in	that	intent's	data	or	extras,	remains	available
to	that	activity	when	it	is	recreated.

The	activity	state	is	stored	as	a	set	of	key/value	pairs	in	a	Bundle	object	called	the	activity	instance	state.	The	system	saves
default	state	information	to	instance	state	bundle	just	before	the	activity	is	stopped,	and	passes	that	bundle	to	the	new
activity	instance	to	restore.

You	can	add	your	own	instance	data	to	the	instance	state	bundle	by	overriding	the	onSaveInstanceState()	callback.	The
state	bundle	is	passed	to	the	onCreate()	method,	so	you	can	restore	that	instance	state	data	when	your	activity	is	created.
There	is	also	a	corresponding	onRestoreInstanceState()	callback	you	can	use	to	restore	the	state	data.

Because	device	rotation	is	a	common	use	case	for	you	app,	make	sure	you	test	that	your	activity	behaves	correctly	in
response	to	this	configuration	change,	and	implement	instance	state	if	you	need	to.

Note:	The	activity	instance	state	is	particular	to	a	specific	instance	of	an	activity,	running	in	a	single	task.	If	the	user	force-
quits	the	app,	reboots	the	device,	or	if	the	Android	system	shuts	down	the	entire	app	process	to	preserve	memory,	the
activity	instance	state	is	lost.	To	keep	state	changes	across	app	instances	and	device	reboots,	you	need	to	write	that	data
to	shared	preferences.	You'll	learn	more	about	shared	preferences	in	a	later	chapter.

Saving	activity	instance	state

To	save	information	to	the	instance	state	bundle,	use	the	onSaveInstanceState()	callback.	This	is	not	a	lifecycle	callback
method,	but	it	is	called	when	the	user	is	leaving	your	activity	(sometime	before	the	onStop()	method).

2.2:	The	Activity	Lifecycle	and	Managing	State

83

@Override

public	void	onSaveInstanceState(Bundle	savedInstanceState)	{

				super.onSaveInstanceState(savedInstanceState);

				//	save	your	state	data	to	the	instance	state	bundle

}

The	onSaveInstanceState()	method	is	passed	a	Bundle	object	(a	collection	of	key/value	pairs)	when	it	is	called.	This	is	the
instance	state	bundle	to	which	you	will	add	your	own	activity	state	information.

You	learned	about	bundles	in	a	previous	chapter	when	you	added	keys	and	values	to	the	intent	extras.	Add	information	to
the	instance	state	bundle	in	the	same	way,	with	keys	you	define	and	the	various	"put"	methods	defined	in	the	Bundle	class:

@Override

public	void	onSaveInstanceState(Bundle	savedInstanceState)	{

				super.onSaveInstanceState(savedInstanceState);

				//	Save	the	user's	current	game	state

				savedInstanceState.putInt("score",	mCurrentScore);

				savedInstanceState.putInt("level",	mCurrentLevel);

}

Don't	forget	to	call	through	to	the	superclass,	to	make	sure	the	state	of	the	view	hierarchy	is	also	saved	to	the	bundle.

Restoring	activity	instance	state

Once	you've	saved	the	activity	instance	state,	you	also	need	to	restore	it	when	the	activity	is	recreated.	You	can	do	this	one
of	two	places:

The	onCreate()	callback	method,	which	is	called	with	the	instance	state	bundle	when	the	activity	is	created.
The	onRestoreInstanceState()	callback,	which	is	called	after	onStart()	after	the	activity	is	created.

Most	of	the	time	the	better	place	to	restore	the	activity	state	is	in	onCreate(),	to	ensure	that	your	user	interface	including	the
state	is	available	as	soon	as	possible.

To	restore	the	saved	instances	state	in	onCreate(),	test	for	the	existence	of	a	state	bundle	before	you	try	to	get	data	out	of
it.	When	your	activity	is	started	for	the	first	time	there	will	be	no	state	and	the	bundle	will	be	null.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);	//	Always	call	the	superclass	first

				//	Check	whether	we're	recreating	a	previously	destroyed	instance

				if	(savedInstanceState	!=	null)	{

								//	Restore	value	of	members	from	saved	state

								mCurrentScore	=	savedInstanceState.getInt("score");

								mCurrentLevel	=	savedInstanceState.getInt("level");

				}	else	{

								//	Probably	initialize	members	with	default	values	for	a	new	instance

				}

				...

}

Related	Practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Activity	Lifecycle	and	Instance	State

Learn	More

2.2:	The	Activity	Lifecycle	and	Managing	State

84

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/22_p_activity_lifecycle_&_state.html

Activities	(API	Guide)
Activity	(API	Reference)
Managing	the	Activity	Lifecycle
Pausing	and	Resuming	an	Activity
Stopping	and	Restarting	an	Activity
Recreating	an	Activity
Handling	Runtime	Changes
Bundle	(API	Reference)

2.2:	The	Activity	Lifecycle	and	Managing	State

85

http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
https://developer.android.com/training/basics/activity-lifecycle/pausing.html
https://developer.android.com/training/basics/activity-lifecycle/stopping.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/guide/topics/resources/runtime-changes.html
https://developer.android.com/reference/android/os/Bundle.html

2.3:	Activities	and	Implicit	Intents
Contents:

Introduction
About	implicit	intents
Sending	implicit	intents
Receiving	implicit	intents
Sharing	data	with	ShareCompat.IntentBuilder
Managing	tasks	and	activities
Activity	Launch	Modes
Task	Affinities
Related	Practical
Learn	More

In	a	previous	chapter	you	learned	about	intents,	and	how	to	launch	specific	activities	in	your	app	with	explicit	intents.	In	this
chapter	you'll	learn	how	to	send	and	receive	implicit	intents,	where	you	declare	a	general	action	to	perform	in	the	intent,
and	the	system	matches	your	request	with	a	specific	activity.	Additionally,	you'll	learn	more	about	Android	tasks,	and	how
you	can	configure	your	apps	to	associate	new	activities	with	different	tasks.

About	implicit	intents
In	an	earlier	chapter	you	learned	about	explicit	intents,	where	you	can	start	one	activity	from	another	by	specifying	the	class
name	of	that	activity.	This	is	the	most	basic	way	to	use	intents,	to	start	an	activity	or	other	app	component	and	pass	data	to
it	(and	sometimes	pass	data	back.)

A	more	flexible	use	of	intents	is	the	implicit	intent.	With	implicit	intents	you	do	not	specify	the	exact	activity	(or	other
component)	to	run—instead,	you	include	just	enough	information	in	the	intent	about	the	task	you	want	to	perform.	The
Android	system	matches	the	information	in	your	request	intent	with	activities	available	on	the	device	that	can	perform	that

2.3:	Activities	and	Implicit	Intents

86

task.	If	there's	only	one	activity	that	matches,	that	activity	is	launched.	If	there	are	multiple	matching	activities,	the	user	is
presented	with	an	app	chooser	that	enables	them	to	pick	which	app	they	would	like	to	perform	the	task.	

For	example,	you	have	an	app	that	lists	available	snippets	of	video.	If	the	user	touches	an	item	in	the	list,	you	want	to	play
that	video	snippet.	Rather	than	implementing	an	entire	video	player	in	your	own	app,	you	can	launch	an	intent	that	specifies
the	task	as	"play	an	object	of	type	video."	The	Android	system	then	matches	your	request	with	an	activity	that	has
registered	itself	to	play	objects	of	type	video.

Activities	register	themselves	with	the	system	as	being	able	to	handle	implicit	intents	with	intent	filters,	declared	in	the
Android	manifest.	For	example,	the	main	activity	(and	only	the	main	activity)	for	your	app	has	an	intent	filter	that	declares	it
the	main	activity	for	the	launcher	category.	This	intent	filter	is	how	the	Android	system	knows	to	start	that	specific	activity	in
your	app	when	the	user	taps	the	icon	for	your	app	on	the	device	home	screen.

Intent	actions,	categories,	and	data
Implicit	intents,	like	explicit	intents,	are	instances	of	the	Intent	class.	In	addition	to	the	parts	of	an	intent	you	learned	about	in
an	earlier	chapter	(such	as	the	intent	data	and	intent	extras),	these	fields	are	used	by	implicit	intents:

The	intent	action,	which	is	the	generic	action	the	receiving	activity	should	perform.	The	available	intent	actions	are
defined	as	constants	in	the	Intent	class	and	begin	with	the	word	ACTION_.	A	common	intent	action	is	ACTION_VIEW,
which	you	use	when	you	have	some	information	that	an	activity	can	show	to	the	user,	such	as	a	photo	to	view	in	a
gallery	app,	or	an	address	to	view	in	a	map	app.	You	can	specify	the	action	for	an	intent	in	the	intent	constructor,	or
with	the	setAction()	method.
An	intent	category,	which	provides	additional	information	about	the	category	of	component	that	should	handle	the
intent.	Intent	categories	are	optional,	and	you	can	add	more	than	one	category	to	an	intent.	Intent	categories	are	also
defined	as	constants	in	the	Intent	class	and	begin	with	the	word	CATEGORY_.	You	can	add	categories	to	the	intent
with	the	addCategory()	method.
The	data	type,	which	indicates	the	MIME	type	of	data	the	activity	should	operate	on.	Usually,	this	is	inferred	from	the
URI	in	the	intent	data	field,	but	you	can	also	explicitly	define	the	data	type	with	the	setType()	method.

Intent	actions,	categories,	and	data	types	are	used	both	by	the	Intent	object	you	create	in	your	sending	activity,	as	well	as	in
the	intent	filters	you	define	in	the	Android	manifest	for	the	receiving	activity.	The	Android	system	uses	this	information	to
match	an	implicit	intent	request	with	an	activity	or	other	component	that	can	handle	that	intent.

2.3:	Activities	and	Implicit	Intents

87

Sending	implicit	intents
Starting	activities	with	implicit	intents,	and	passing	data	between	those	activities,	works	much	the	same	way	as	it	does	for
explicit	intents:

1.	 In	the	sending	activity,	create	a	new	Intent	object.
2.	 Add	information	about	the	request	to	the	Intent	object,	such	as	data	or	extras.
3.	 Send	the	intent	with	startActivity()	(to	just	start	the	activity)	or	startActivityforResult()	(to	start	the	activity	and	expect	a

result	back).

When	you	create	an	implicit	Intent	object,	you:

Do	not	specify	the	specific	activity	or	other	component	to	launch.
Add	an	intent	action	or	intent	categories	(or	both).
Resolve	the	intent	with	the	system	before	calling	startActivity()	or	startActivityforResult().
Show	an	app	chooser	for	the	request	(optional).

Create	implicit	Intent	objects
To	use	an	implicit	intent,	create	an	Intent	object	as	you	did	for	an	explicit	intent,	only	without	the	specific	component	name.

Intent	sendIntent	=	new	Intent();

You	can	also	create	the	Intent	object	with	a	specific	action:

Intent	sendIntent	=	new	Intent(Intent.ACTION_VIEW);

Once	you	have	an	Intent	object	you	can	add	other	information	(category,	data,	extras)	with	the	various	Intent	methods.	For
example,	this	code	creates	an	implicit	Intent	object,	sets	the	intent	action	to	ACTION_SEND,	defines	an	intent	extra	to	hold
the	text,	and	sets	the	type	of	the	data	to	the	MIME	type	"text/plain".

Intent	sendIntent	=	new	Intent();

sendIntent.setAction(Intent.ACTION_SEND);

sendIntent.putExtra(Intent.EXTRA_TEXT,	textMessage);

sendIntent.setType("text/plain");

Resolve	the	activity	before	starting	it

When	you	define	an	implicit	intent	with	a	specific	action	and/or	category,	there	is	a	possibility	that	there	won't	be	any
activities	on	the	device	that	can	handle	your	request.	If	you	just	send	the	intent	and	there	is	no	appropriate	match,	your	app
will	crash.

To	verify	that	an	activity	or	other	component	is	available	to	receive	your	intent,	use	the	resolveActivity()	method	with	the
system	package	manager	like	this:

if	(sendIntent.resolveActivity(getPackageManager())	!=	null)	{

				startActivity(chooser);

}

If	the	result	of	resolveActivity()	is	not	null,	then	there	is	at	least	one	app	available	that	can	handle	the	intent,	and	it's	safe	to
call	startActivity().	Do	not	send	the	intent	if	the	result	is	null.

If	you	have	a	feature	that	depends	on	an	external	activity	that	may	or	may	not	be	available	on	the	device,	a	best	practice	is
to	test	for	the	availability	of	that	external	activity	before	the	user	tries	to	use	it.	If	there	is	no	activity	that	can	handle	your
request	(that	is,	resolveActivity()	returns	null),	disable	the	feature	or	provide	the	user	an	error	message	for	that	feature.

2.3:	Activities	and	Implicit	Intents

88

Show	the	app	chooser

To	find	an	activity	or	other	component	that	can	handle	your	intent	requests,	the	Android	system	matches	your	implicit	intent
with	an	activity	whose	intent	filters	indicate	that	they	can	perform	that	action.	If	there	are	multiple	apps	installed	that	match,
the	user	is	presented	with	an	app	chooser	that	lets	them	select	which	app	they	want	to	use	to	handle	that	intent.

2.3:	Activities	and	Implicit	Intents

89

2.3:	Activities	and	Implicit	Intents

90

In	many	cases	the	user	has	a	preferred	app	for	a	given	task,	and	they	will	select	the	option	to	always	use	that	app	for	that
task.	However,	if	multiple	apps	can	respond	to	the	intent	and	the	user	might	want	to	use	a	different	app	each	time,	you	can
choose	to	explicitly	show	a	chooser	dialog	every	time.	For	example,	when	your	app	performs	a	"share	this"	action	with	the
ACTION_SEND	action,	users	may	want	to	share	using	a	different	app	depending	on	the	current	situation.

To	show	the	chooser,	you	create	a	wrapper	intent	for	your	implicit	intent	with	the	createChooser()	method,	and	then	resolve
and	call	startActivity()	with	that	wrapper	intent.	The	createChooser()	method	also	requires	a	string	argument	for	the	title	that
appears	on	the	chooser.	You	can	specify	the	title	with	a	string	resource	as	you	would	any	other	string.

For	example:

//	The	implicit	Intent	object

Intent	sendIntent	=	new	Intent(Intent.ACTION_SEND);

//	Always	use	string	resources	for	UI	text.

String	title	=	getResources().getString(R.string.chooser_title);

//	Create	the	wrapper	intent	to	show	the	chooser	dialog.

Intent	chooser	=	Intent.createChooser(sendIntent,	title);

//	Resolve	the	intent	before	starting	the	activity

if	(sendIntent.resolveActivity(getPackageManager())	!=	null)	{

				startActivity(chooser);

}

Receiving	implicit	intents
If	you	want	an	activity	in	your	app	to	respond	to	implicit	intents	(from	your	own	app	or	other	apps),	declare	one	or	more
intent	filters	in	the	Android	manifest.	Each	intent	filter	specifies	the	type	of	intents	it	accepts	based	on	the	intent's	action,
data,	and	category.	The	system	will	deliver	an	implicit	intent	to	your	app	component	only	if	that	intent	can	pass	through	one
of	your	intent	filters.

Note:	An	explicit	intent	is	always	delivered	to	its	target,	regardless	of	any	intent	filters	the	component	declares.	Conversely,
if	your	activities	do	not	declare	any	intent	filters,	they	can	only	be	launched	with	an	explicit	intent.
Once	your	activity	is	successfully	launched	with	an	implicit	intent	you	can	handle	that	intent	and	its	data	the	same	way	you
did	an	explicit	intent,	by:

1.	 Getting	the	Intent	object	with	getIntent().
2.	 Getting	intent	data	or	extras	out	of	that	intent.
3.	 Performing	the	task	the	intent	requested.
4.	 Returning	data	to	the	calling	activity	with	another	intent,	if	needed.

Intent	filters

Define	intent	filters	with	one	or	more		<intent-filter>		elements	in	the	app's	manifest	file,	nested	in	the	corresponding
	<activity>		element.	Inside		<intent-filter>	,	specify	the	type	of	intents	your	activity	can	handle.	The	Android	system
matches	an	implicit	intent	with	an	activity	or	other	app	component	only	if	the	fields	in	the	Intent	object	match	the	intent	filters
for	that	component.

An	intent	filter	may	contain	these	elements,	which	correspond	to	the	fields	in	the	Intent	object	described	above:

	<action>	:	The	intent	action.
	<data>	:	The	type	of	data	accepted,	including	the	MIME	type	or	other	attributes	of	the	data	URI	(such	as	scheme,	host,
port,	path,	and	so	no).
	<category>	:	The	intent	category.

For	example,	the	main	activity	for	your	app	includes	this		<intent-filter>		element,	which	you	saw	in	an	earlier	chapter:

2.3:	Activities	and	Implicit	Intents

91

https://developer.android.com/reference/android/content/Intent.html#ACTION_SEND

<intent-filter>

				<action	android:name="android.intent.action.MAIN"	/>

				<category	android:name="android.intent.category.LAUNCHER"	/>

</intent-filter>

This	intent	filter	has	the	action	MAIN	and	the	category	LAUNCHER.	The		<action>		element	specifies	that	this	is	the	"main"
entry	point	to	the	application.	The		<category>		element	specifies	that	this	activity	should	be	listed	in	the	system's
application	launcher	(to	allow	users	to	launch	this	activity).	Only	the	main	activity	for	your	app	should	have	this	intent	filter.

Here's	another	example	for	an	implicit	intent	to	share	a	bit	of	text.	This	intent	filter	matches	the	implicit	intent	example	from
the	previous	section:

<activity	android:name="ShareActivity">

				<intent-filter>

								<action	android:name="android.intent.action.SEND"/>

								<category	android:name="android.intent.category.DEFAULT"/>

								<data	android:mimeType="text/plain"/>

				</intent-filter>

</activity>

You	can	specify	more	than	one	action,	data,	or	category	for	the	same	intent	filter,	or	have	multiple	intent	filters	per	activity	to
handle	different	kinds	of	intents.

The	Android	system	tests	an	implicit	intent	against	an	intent	filter	by	comparing	the	parts	of	that	intent	to	each	of	the	three
intent	filter	elements	(action,	category,	and	data).	The	intent	must	pass	all	three	tests	or	the	Android	system	won't	deliver
the	intent	to	the	component.	However,	because	a	component	may	have	multiple	intent	filters,	an	intent	that	does	not	pass
through	one	of	a	component's	filters	might	make	it	through	on	another	filter.

Actions
An	intent	filter	can	declare	zero	or	more		<action>		elements	for	the	intent	action.	The	action	is	defined	in	the	name
attribute,	and	consists	of	the	string	"android.intent.action."	plus	the	name	of	the	intent	action,	minus	the	ACTION_	prefix.
So,	for	example,	an	implicit	intent	with	the	action	ACTION_VIEW	matches	an	intent	filter	whose	action	is
	android.intent.action.VIEW.	

For	example,	this	intent	filter	matches	either	ACTION_EDIT	and	ACTION_VIEW:

<intent-filter>

				<action	android:name="android.intent.action.EDIT"	/>

				<action	android:name="android.intent.action.VIEW"	/>

				...

</intent-filter>

To	get	through	this	filter,	the	action	specified	in	the	incoming	Intent	object	must	match	at	least	one	of	the	actions.	You	must
include	at	least	one	intent	action	for	an	incoming	implicit	intent	to	match.

Categories
An	intent	filter	can	declare	zero	or	more		<category>		elements	for	intent	categories.	The	category	is	defined	in	the	name
attribute,	and	consists	of	the	string	"android.intent.category."	plus	the	name	of	the	intent	category,	minus	the	CATEGORY
prefix.

For	example,	this	intent	filter	matches	either	CATEGORY_DEFAULT	and	CATEGORY_BROWSABLE:

<intent-filter>

				<category	android:name="android.intent.category.DEFAULT"	/>

				<category	android:name="android.intent.category.BROWSABLE"	/>

				...

</intent-filter>

2.3:	Activities	and	Implicit	Intents

92

Note	that	all	activities	that	you	want	to	accept	implicit	intents	must	include	the	android.intent.category.DEFAULT	intent-filter.
This	category	is	applied	to	all	implicit	Intent	objects	by	the	Android	system.

Data

An	intent	filter	can	declare	zero	or	more		<data>		elements	for	the	URI	contained	in	the	intent	data.	As	the	intent	data
consists	of	a	URI	and	(optionally)	a	MIME	type,	you	can	create	an	intent	filter	for	various	aspects	of	that	data,	including:

URI	Scheme
URI	Host
URI	Path
Mime	type

For	example,	this	intent	filter	matches	data	intents	with	a	URI	scheme	of	http	and	a	MIME	type	of	either	"video/mpeg"	or
"audio/mpeg".

<intent-filter>

				<data	android:mimeType="video/mpeg"	android:scheme="http"	/>

				<data	android:mimeType="audio/mpeg"	android:scheme="http"	/>

				...

</intent-filter>

Sharing	data	with	ShareCompat.IntentBuilder
Share	actions	are	an	easy	way	for	users	to	share	items	in	your	app	with	social	networks	and	other	apps.	Although	you	can
build	a	share	action	in	your	own	app	using	implicit	intents	with	the	ACTION_SEND	action,	Android	provides	the
ShareCompat.IntentBuilder	helper	class	to	easily	implement	sharing	in	your	app.

Note:	For	apps	that	target	Android	releases	after	API	14,	you	can	use	the	ShareActionProvider	class	for	share	actions
instead	of	ShareCompat.IntentBuilder.	The	ShareCompat	class	is	part	of	the	V4	support	library,	and	allows	you	to	provide
share	actions	in	apps	in	a	backward-compatible	fashion.	ShareCompat	provides	a	single	API	for	sharing	on	both	old	and
new	Android	devices.	You'll	learn	more	about	the	Android	support	libraries	in	a	later	chapter.
With	the	ShareCompat.IntentBuilder	class	you	do	not	need	to	create	or	send	an	implicit	intent	for	the	share	action.	Use	the
methods	in	ShareCompat.IntentBuilder	to	indicate	the	data	you	want	to	share	as	well	as	any	additional	information.	Start
with	the	from()	method	to	create	a	new	intent	builder,	add	other	methods	to	add	more	data,	and	end	with	the	startChooser()
method	to	create	and	send	the	intent.	You	can	chain	the	methods	together	like	this:

ShareCompat.IntentBuilder

				.from(this)									//	information	about	the	calling	activity

				.setType(mimeType)		//	mime	type	for	the	data

				.setChooserTitle("Share	this	text	with:	")	//title	for	the	app	chooser

				.setText(txt)							//	intent	data

				.startChooser();				//	send	the	intent

Managing	tasks	and	activities
In	a	previous	chapter	you	learned	about	tasks	and	the	back	stack,	in	which	the	task	for	your	app	contains	its	own	stack	for
the	activities	the	user	has	visited	while	they	use	your	app.	As	the	user	navigates	around	your	app,	activity	instances	for	that
task	are	pushed	and	popped	from	the	stack	for	that	task.

Most	of	the	time	the	user's	navigation	from	activity	to	activity	and	back	again	through	the	stack	is	straightforward.
Depending	on	the	design	and	navigation	of	your	app	there	may	be	complications,	especially	with	activities	that	are	started
from	other	apps	and	other	tasks.

2.3:	Activities	and	Implicit	Intents

93

http://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html

For	example,	say	you	have	an	app	with	three	activities:	A,	B,	and	C.	A	launches	B	with	an	intent,	and	B	launches	C.	C,	in
turn	sends	an	intent	to	launch	A.	In	this	case	the	system	creates	a	second	instance	of	A	on	the	top	of	the	stack,	rather	than
bringing	the	already-running	instance	to	the	foreground.	Depending	on	how	you	implement	your	activities,	the	two
instances	of	A	can	get	out	of	sync	and	provide	a	confusing	experience	for	the	user	as	they	navigate	back	through	the	stack.

Or,	say	your	activity	C	can	be	launched	from	a	second	app	with	an	implicit	intent.	The	user	runs	the	second	app,	which	has
its	own	task	and	its	own	back	stack.	If	that	app	uses	an	implicit	intent	to	launch	your	activity	C,	a	new	instance	of	C	is
created	and	placed	on	the	back	stack	for	that	second	app's	task.	Your	app	still	has	its	own	task,	its	own	back	stack,	and	its
own	instance	of	C.	

Much	of	the	time	the	Android's	default	behavior	for	tasks	and	activities	works	fine	and	you	don't	have	to	worry	about	how
your	activities	are	associated	with	tasks,	or	how	they	exist	in	the	back	stack.	If	you	want	to	change	the	normal	behavior,
Android	provides	a	number	of	ways	to	manage	tasks	and	the	activities	within	those	tasks,	including:

Activity	launch	modes,	to	determine	how	an	activity	should	be	launched.
Task	affinities,	which	indicate	which	task	a	launched	activity	belongs	to.

Activity	Launch	Modes

2.3:	Activities	and	Implicit	Intents

94

Use	activity	launch	modes	to	indicate	how	new	activities	should	be	treated	when	they're	launched—that	is,	if	they	should	be
added	to	the	current	task,	or	launched	into	a	new	task.	Define	launch	modes	for	the	activity	with	attributes	on	the
	<activity>		element	of	the	Android	manifest,	or	with	flags	set	on	the	intent	that	starts	that	activity.

Activity	attributes

To	define	a	launch	mode	for	an	activity	add	the	android:launchMode	attribute	to	the		<activity>		element	in	the	Android
manifest.	This	example	uses	a	launch	mode	of	"standard",	which	is	the	default.

<activity

			android:name=".SecondActivity"

			android:label="@string/activity2_name"

			android:parentActivityName=".MainActivity"

			android:launchMode="standard">

			...

</activity>

There	are	four	launch	modes	available	as	part	of	the		<activity>		element:

"standard"	(the	default):	New	activities	are	launched	and	added	to	the	back	stack	for	the	current	task.	An	activity	can
be	instantiated	multiple	times,	a	single	task	can	have	multiple	instances	of	the	same	activity,	and	multiple	instances
can	belong	to	different	tasks.
"singleTop":	If	an	instance	of	an	activity	exists	at	the	top	of	the	back	stack	for	the	current	task	and	an	intent	request	for
that	activity	arrives,	Android	routes	that	intent	to	the	existing	activity	instance	rather	than	creating	a	new	instance.	A
new	activity	is	still	instantiated	if	there	is	an	existing	activity	anywhere	in	the	back	stack	other	than	the	top.
"singleTask":	When	the	activity	is	launched	the	system	creates	a	new	task	for	that	activity.	If	another	task	already	exists
with	an	instance	of	that	activity,	the	system	routes	the	intent	to	that	activity	instead.
"singleInstance":	Same	as	single	task,	except	that	the	system	doesn't	launch	any	other	activities	into	the	task	holding
the	activity	instance.	The	activity	is	always	the	single	and	only	member	of	its	task.

The	vast	majority	of	apps	will	only	use	the	standard	or	single	top	launch	modes.	See	the	launchMode	attribute
documentation	for	more	detailed	information	on	launch	modes.

Intent	flags

Intent	flags	are	options	that	specify	how	the	activity	(or	other	app	component)	that	receives	the	intent	should	handle	that
intent.	Intent	flags	are	defined	as	constants	in	the	Intent	class	and	begin	with	the	word	FLAG_.	You	add	intent	flags	to	an
Intent	object	with	setFlag()	or	addFlag().

Three	specific	intent	flags	are	used	to	control	activity	launch	modes,	either	in	conjunction	with	the	launchMode	attribute	or
in	place	of	it.	Intent	flags	always	take	precedence	over	the	launch	mode	in	case	of	conflicts.

FLAG_ACTIVITY_NEW_TASK:	start	the	activity	in	a	new	task.	This	is	the	same	behavior	as	the	singleTask	launch
mode.
FLAG_ACTIVITY_SINGLE_TOP:	if	the	activity	to	be	launched	is	at	the	top	of	the	back	stack,	route	the	intent	to	that
existing	activity	instance.	Otherwise	create	a	new	activity	instance.	This	is	the	same	behavior	as	the	singleTop	launch
mode.
FLAG_ACTIVITY_CLEAR_TOP:	If	an	instance	of	the	activity	to	be	launched	already	exists	in	the	back	stack,	destroy
any	other	activities	on	top	of	it	and	route	the	intent	to	that	existing	instance.	When	used	in	conjunction	with
FLAG_ACTIVITY_NEW_TASK,	this	flag	locates	any	existing	instances	of	the	activity	in	any	task	and	brings	it	to	the
foreground.

See	the	Intent	class	for	more	information	about	other	available	intent	flags.

Handle	new	intents

2.3:	Activities	and	Implicit	Intents

95

https://developer.android.com/guide/topics/manifest/activity-element.html#lmode
https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_NEW_TASK
https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_SINGLE_TOP
https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_CLEAR_TOP
https://developer.android.com/reference/android/content/Intent.html

When	the	Android	system	routes	an	intent	to	an	existing	activity	instance,	the	system	calls	the	onNewIntent()	callback
method	(usually	just	before	the	onResume()	method).	The	onNewIntent()	method	includes	an	argument	for	the	new	intent
that	was	routed	to	the	activity.	Override	the	onNewIntent()	method	in	your	class	to	to	handle	the	information	from	that	new
intent.

Note	that	the	getIntent()	method—to	get	access	to	the	intent	that	launched	the	activity—always	retains	the	original	intent
that	launched	the	activity	instance.	Call	setIntent()	in	the	onNewIntent()	method:

@Override

public	void	onNewIntent(Intent	intent)	{

				super.onNewIntent(intent);

				//	Use	the	new	intent,	not	the	original	one

				setIntent(intent);

}

Any	call	to	getIntent()	after	this	returns	the	new	intent.

Task	Affinities
Task	affinities	indicate	which	task	an	activity	prefers	to	belong	to	when	that	activity	instance	is	launched.	By	default	all
activities	belong	to	the	app	that	launched	them.	Activities	from	outside	an	app	launched	with	implicit	intents	belong	to	the
app	that	sent	the	implicit	intent.

To	define	a	task	affinity,	add	the	android:taskAffinity	attribute	to	the		<activity>		element	in	the	Android	manifest.	The
default	task	affinity	is	the	package	name	for	the	app	(declared	in	.	The	new	task	name	should	be	unique	and	different	from
the	package	name.	This	example	uses	"com.example.android.myapp.newtask"	for	the	affinity	name.

<activity

			android:name=".SecondActivity"

			android:label="@string/activity2_name"

			android:parentActivityName=".MainActivity"

			android:taskAffinity="com.example.android.myapp.newtask">

			...

</activity>

Task	affinities	are	often	used	in	conjunction	with	the	singleTask	launch	mode	or	the	FLAG_ACTIVITY_NEW_TASK	intent
flag	to	place	a	new	activity	in	its	own	named	task.	If	the	new	task	already	exists,	the	intent	is	routed	to	that	task	and	that
affinity.

Another	use	of	task	affinities	is	reparenting,	which	enables	a	task	to	move	from	the	activity	in	which	it	was	launched	to	the
activity	it	has	an	affinity	for.	To	enable	task	reparenting,	add	a	task	affinity	attribute	to	the		<activity>		element	and	set
android:allowTaskReparenting	to	true.

<activity

			android:name=".SecondActivity"

			android:label="@string/activity2_name"

			android:parentActivityName=".MainActivity"

			android:taskAffinity="com.example.android.myapp.newtask"

			android:allowTaskReparenting="true"	>

			...

</activity>

Related	Practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Activities	and	Implicit	Events

2.3:	Activities	and	Implicit	Intents

96

https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_NEW_TASK
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/23_p_activities_and_implicit_intents.html

Learn	More
Activities	(API	Guide)
Activity	(API	Reference)
Intents	and	Intent	Filters
Intent	(API	Reference)
	<intent-filter>	

Allowing	Other	Apps	to	Start	Your	Activity
ShareCompat.IntentBuilder	(API	Reference)
Uri	(API	Reference)
Google	Maps	Intents
Tasks	and	Back	Stack
	<activity>	

Manipulating	Android	tasks	and	back	stack
Android	task	affinity	explanation
Understand	Android	Activity's	launchMode

2.3:	Activities	and	Implicit	Intents

97

http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/training/basics/intents/filters.html
http://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html
http://developer.android.com/reference/android/net/Uri.html
https://developers.google.com/maps/documentation/android-api/intents#display_a_map
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/guide/topics/manifest/activity-element.html
http://www.slideshare.net/RanNachmany/manipulating-android-tasks-and-back-stack
http://stackoverflow.com/questions/17872989/android-task-affinity-explanation
https://inthecheesefactory.com/blog/understand-android-activity-launchmode/en

3.1:	The	Android	Studio	Debugger
Contents:

Introduction
About	debugging
Running	the	debugger
Using	Breakpoints
Stepping	through	code
Viewing	execution	stack	frames
Inspecting	and	modifying	variables
Setting	watches
Evaluating	expressions
More	tools	for	debugging
Trace	logging	and	the	Android	manifest
Related	practical
Learn	more

In	this	chapter	you'll	learn	about	debugging	your	apps	in	Android	Studio.

About	debugging
Debugging	is	the	process	of	finding	and	fixing	errors	(bugs)	or	unexpected	behavior	in	your	code.	All	code	has	bugs,	from
incorrect	behavior	in	your	app,	to	behavior	that	excessively	consumes	memory	or	network	resources,	to	actual	app	freezing
or	crashing.

Bugs	can	result	for	many	reasons:

Errors	in	your	design	or	implementation.
Android	framework	limitations	(or	bugs).
Missing	requirements	or	assumptions	for	how	the	app	should	work.
Device	limitations	(or	bugs)

Use	the	debugging,	testing,	and	profiling	capabilities	in	Android	Studio	to	help	you	reproduce,	find,	and	resolve	all	of	these
problems.	Those	capabilities	include:

The	Android	monitor	(logcat)
The	Android	Studio	debugger
Testing	frameworks	such	as	JUnit	or	Espresso
Dalvik	Debug	Monitor	Server	(DDMS),	to	track	resource	usage

In	this	chapter	you'll	learn	how	to	debug	your	app	with	the	Android	Studio	debugger,	set	and	view	breakpoints,	step	through
your	code,	and	examine	variables.

Running	the	debugger
Running	an	app	in	debug	mode	is	similar	to	just	running	that	app.	You	can	either	run	an	app	in	debug	mode,	or	attach	the
debugger	to	an	already-running	app.

Run	your	app	in	debug	mode

3.1:	The	Android	Studio	Debugger

98

To	start	debugging,	click	Debug	 	in	the	toolbar.	Android	Studio	builds	an	APK,	signs	it	with	a	debug	key,	installs	it	on
your	selected	device,	then	runs	it	and	opens	the	Debug	window.	

Debug	a	running	app

If	your	app	is	already	running	on	a	device	or	emulator,	start	debugging	that	app	with	these	steps:

1.	 Select	Run	>	Attach	debugger	to	Android	process	or	click	the	Attach	 	icon	in	the	toolbar.
2.	 In	the	Choose	Process	dialog,	select	the	process	to	which	you	want	to	attach	the	debugger.

By	default,	the	debugger	shows	the	device	and	app	process	for	the	current	project,	as	well	as	any	connected	hardware
devices	or	virtual	devices	on	your	computer.	Select	Show	all	processes	to	show	all	processes	on	all	devices.

3.	 Click	OK.	The	Debug	window	appears	as	before.

Resume	or	Stop	Debugging

To	resume	executing	an	app	after	debugging	it,	select	Run	>	Resume	Program	or	click	the	Resume	 	icon.

To	stop	debugging	your	app,	select	Run	>	Stop	or	click	the	Stop	icon	 	in	the	toolbar.

Using	Breakpoints
A	breakpoint	is	a	place	in	your	code	where	you	want	to	pause	the	normal	execution	of	your	app	to	perform	other	actions
such	as	examining	variables	or	evaluating	expressions,	or	executing	your	code	line	by	line	to	determine	the	causes	of
runtime	errors.

Add	breakpoints
To	add	a	breakpoint	to	a	line	in	your	code,	use	these	steps:

1.	 Locate	the	line	of	code	where	you	want	to	pause	execution.
2.	 Click	in	the	left	gutter	of	the	editor	window	at	that	line,	next	to	the	line	numbers.	A	red	dot	appears	at	that	line,

indicating	a	breakpoint.

You	can	also	use	Run	>	Toggle	Line	Breakpoint	or	Control-F8	(Command-F8	on	OS	X)	to	set	a	breakpoint	at	a	line.

If	your	app	is	already	running,	you	don't	need	to	update	it	to	add	the	breakpoint.

3.1:	The	Android	Studio	Debugger

99

When	your	code	execution	reaches	the	breakpoint,	Android	Studio	pauses	execution	of	your	app.	You	can	then	use	the
tools	in	the	Android	debugger	to	view	the	state	of	the	app	and	debug	that	app	as	it	runs.

View	and	configure	breakpoints

To	view	all	the	breakpoints	you've	set	and	configure	breakpoint	settings,	click	the	View	Breakpoints	 	icon	on	the	left
edge	of	the	debugger	window.	The	Breakpoints	window	appears.

In	this	window	all	the	breakpoints	you	have	set	appear	in	the	left	pane,	and	you	can	enable	or	disable	each	breakpoint	with
the	check	boxes.	If	a	breakpoint	is	disabled,	Android	Studio	does	not	pause	your	app	when	execution	reaches	that
breakpoint.

Select	a	breakpoint	from	the	list	to	configure	its	settings.	You	can	configure	a	breakpoint	to	be	disabled	at	first	and	have	the
system	enable	it	after	a	different	breakpoint	is	encountered.	You	can	also	configure	whether	a	breakpoint	should	be
disabled	after	it	has	been	reached.

To	set	a	breakpoint	for	any	exception,	select	Exception	Breakpoints	in	the	list	of	breakpoints.

Disable	(Mute)	all	breakpoints
Disabling	a	breakpoint	enables	you	to	temporarily	"mute"	that	breakpoint	without	removing	it	from	your	code.	If	you	remove
a	breakpoint	altogether	you	also	lose	any	conditions	or	other	features	you	created	for	that	breakpoint,	so	disabling	it	can	be
a	better	choice.

To	mute	all	breakpoints,	click	the	Mute	Breakpoints	 	icon.	Click	the	icon	again	to	enable	(unmute)	all	breakpoints.

Use	conditional	breakpoints

Conditional	breakpoints	are	breakpoints	that	only	stop	execution	of	your	app	if	the	test	in	the	condition	is	true.	To	define	a
test	for	a	conditional	breakpoint,	use	these	steps:

1.	 Right	click	on	a	breakpoint	icon,	and	enter	a	test	in	the	Condition	field.

3.1:	The	Android	Studio	Debugger

100

You	can	also	use	the	Breakpoints	window	to	enter	a	breakpoint	condition.	

The	test	you	enter	in	this	field	can	be	any	Java	expression	as	long	as	it	returns	a	boolean	value.	You	can	use	variable
names	from	your	app	as	part	of	the	expression.

2.	 Run	your	app	in	debug	mode.	Execution	of	your	app	stops	at	the	conditional	breakpoint,	if	the	condition	evaluates	to
true.

Stepping	through	code
After	your	app's	execution	has	stopped	because	a	breakpoint	has	been	reached,	you	can	execute	your	code	from	that	point
one	line	at	a	time	with	the	Step	Over,	Step	Into,	and	Step	Out	functions.

To	use	any	of	the	step	functions:

1.	 Begin	debugging	your	app.	Pause	the	execution	of	your	app	with	a	breakpoint.

Your	app's	execution	stops,	and	the	debugger	shows	the	current	state	of	the	app.	The	current	line	is	highlighted	in	your
code.

2.	 Click	the	Step	Over	 	icon,	select	Run	>	Step	Over,	or	type	F8.

Step	Over	executes	the	next	line	of	the	code	in	the	current	class	and	method,	executing	all	of	the	method	calls	on	that
line	and	remaining	in	the	same	file.

3.	 Click	the	Step	Into	 	icon,	select	Run	>	Step	Into,	or	type	F7.

Step	Into	jumps	into	the	execution	of	a	method	call	on	the	current	line	(versus	just	executing	that	method	and
remaining	on	the	same	line).	The	Frames	view	(which	you'll	learn	about	in	the	next	section)	updates	to	show	the	new
stack	frame	(the	new	method).	If	the	method	call	is	contained	in	another	class,	the	file	for	that	class	is	opened	and	the
current	line	in	that	file	is	highlighted.	You	can	continue	stepping	over	lines	in	this	new	method	call,	or	step	deeper	into
other	methods.

4.	 Click	the	Step	Out	 	icon,	select	Run	>	Step	Out,	or	type	Shift-F8.

Step	Out	finishes	executing	the	current	method	and	returns	to	the	point	where	that	method	was	called.

5.	 To	resume	normal	execution	of	the	app,	select	Run	>	Resume	Program	or	click	the	Resume	 	icon.

Viewing	execution	stack	frames

3.1:	The	Android	Studio	Debugger

101

The	Frames	view	of	the	debugger	window	allows	you	to	inspect	the	execution	stack	and	the	specific	frame	that	caused	the
current	breakpoint	to	be	reached.	

The	execution	stack	shows	all	the	classes	and	methods	(frames)	that	are	being	executed	up	to	this	point	in	the	app,	in
reverse	order	(most	recent	frame	first).	As	execution	of	a	particular	frame	finishes,	that	frame	is	popped	from	the	stack	and
execution	returns	to	the	next	frame.

Clicking	a	line	for	a	frame	in	the	Frames	view	opens	the	associated	source	in	the	editor	and	highlights	the	line	where	that
frame	was	initially	executed.	The	Variables	and	Watches	views	also	update	to	reflect	the	state	of	the	execution	environment
when	that	frame	was	last	entered.

Inspecting	and	modifying	variables
The	Variables	view	of	the	debugger	window	allows	you	to	inspect	the	variables	available	at	the	current	stack	frame	when
the	system	stops	your	app	on	a	breakpoint.	Variables	that	hold	objects	or	collections	such	as	arrays	can	be	expanded	to
view	their	components.

The	Variables	pane	also	allows	you	to	evaluate	expressions	on	the	fly	using	static	methods	and/or	variables	available
within	the	selected	frame.

If	the	Variables	view	is	not	visible,	click	the	Restore	Variables	View	icon	 .	

To	modify	variables	in	your	app	as	it	runs:

1.	 Right-click	any	variable	in	the	Variables	view,	and	select	Set	Value.	You	can	also	use	F2.
2.	 Enter	a	new	value	for	the	variable,	and	type	Return.

3.1:	The	Android	Studio	Debugger

102

The	value	you	enter	must	be	of	the	appropriate	type	for	that	variable,	or	Android	Studio	returns	a	"type	mismatch"
error.

Setting	watches
The	Watches	view	provides	similar	functionality	to	the	Variables	view	except	that	expressions	added	to	the	Watches	pane
persist	between	debugging	sessions.	Add	watches	for	variables	and	fields	that	you	access	frequently	or	that	provide	state
that	is	helpful	for	the	current	debugging	session.

To	use	watches:

1.	 Begin	debugging	your	app.
2.	 In	the	Watches	pane,	click	the	plus	(+)	button.

In	the	text	box	that	appears,	type	the	name	of	the	variable	or	expression	you	want	to	watch	and	then	press	Enter.

Remove	an	item	from	the	Watches	list	by	selecting	the	item	and	then	clicking	the	minus	(-)	button.

Change	the	order	of	the	elements	in	the	Watches	list	by	selecting	an	item	and	then	clicking	the	up	or	down	icons.

Evaluating	expressions
Use	Evaluate	Expression	to	explore	the	state	of	variables	and	objects	in	your	app,	including	calling	methods	on	those
objects.	To	evaluate	an	expression:

1.	 Click	the	Evaluate	Expression	 	icon,	or	select	Run	>	Evaluate	Expression.	You	can	also	right-click	on	any
variable	and	choose	Evaluate	Expression.

The	Evaluate	Expression	window	appears.

2.	 Enter	any	expression	into	the	Expression	window	and	click	Evaluate.

The	Evaluate	Expression	window	updates	with	the	result	of	the	execution.	Note	that	the	result	you	get	from	evaluating
an	expression	is	based	on	the	app's	current	state.	Depending	on	the	values	of	the	variables	in	your	app	at	the	time	you
evaluate	expressions,	you	may	get	different	results.	Changing	the	values	of	variables	in	your	expressions	also
changes	the	current	running	state	of	the	app.

More	tools	for	debugging
Android	Studio	and	the	Android	SDK	include	a	number	of	other	tools	to	help	you	find	and	correct	issues	in	your	code.
These	tools	include:

System	log	(logcat).	As	you've	learned	in	previous	lessons,	you	can	use	the	Log	class	to	send	messages	to	the
Android	system	log,	and	view	those	messages	in	Android	Studio.

To	write	log	messages	in	your	code,	use	the	Log	class.	Log	messages	help	you	understand	the	execution	flow	by
collecting	the	system	debug	output	while	you	interact	with	your	app.	Log	messages	can	tell	you	what	part	of	your
application	failed.	For	more	information	about	logging,	see	Reading	and	Writing	Logs.

Tracing	and	Logging.	Analyzing	traces	allows	you	to	see	how	much	time	is	spent	in	certain	methods,	and	which	ones
are	taking	the	longest	times.

To	create	the	trace	files,	include	the	Debug	class	and	and	call	one	of	the	startMethodTracing()	methods.	In	the
call,	you	specify	a	base	name	for	the	trace	files	that	the	system	generates.	To	stop	tracing,	call
stopMethodTracing().	These	methods	start	and	stop	method	tracing	across	the	entire	virtual	machine.	For
example,	you	could	call	startMethodTracing()	in	your	activity's	onCreate()	method,	and	call	stopMethodTracing()	in
that	activity's	onDestroy()	method.

The	Android	Debug	Bridge	(ADB).	ADB	is	a	command-line	tool	that	lets	you	communicate	with	an	emulator	instance	or

3.1:	The	Android	Studio	Debugger

103

https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/reference/android/os/Debug.html
https://developer.android.com/reference/android/os/Debug.html#startMethodTracing()
https://developer.android.com/reference/android/os/Debug.html#stopMethodTracing()
https://developer.android.com/reference/android/os/Debug.html#startMethodTracing()
https://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/os/Debug.html#stopMethodTracing()
https://developer.android.com/reference/android/app/Activity.html#onDestroy()

connected	Android-powered	device.
Dalvik	Debug	Monitor	Server	(DDMS).	The	DDSM	tool	provides	port-forwarding	services,	screen	capture,	thread	and
heap	information,	logcat,	process,	and	radio	state	information,	incoming	call	and	SMS	spoofing,	location	data	spoofing,
and	more.
CPU	and	memory	monitors.	Android	Studio	includes	a	number	of	monitors	to	help	you	visualize	the	behavior	and
performance	of	your	app.
Screenshot	and	video	capture.

Trace	logging	and	the	Android	manifest
There	are	multiple	types	of	debugging	available	to	you	beyond	setting	breakpoints	and	stepping	through	code.	You	can	also
use	logging	and	tracing	to	find	issues	with	your	code.	When	you	have	a	trace	log	file	(generated	by	adding	tracing	code	to
your	application	or	by	DDMS),	you	can	load	the	log	files	in	Traceview,	which	displays	the	log	data	in	two	panels:

A	timeline	panel	--	describes	when	each	thread	and	method	started	and	stopped
A	profile	panel	--	provides	a	summary	of	what	happened	inside	a	method

Likewise,	you	can	set	android:debuggable	in	the		<application>		tag	of	the	Android	Manifest	to		"true"	,	which	sets
whether	or	not	the	application	can	be	debugged,	even	when	running	on	a	device	in	user	mode.	By	default,	this	value	is	set
to		"false"	.

You	can	create	and	configure	build	types	in	the	module-level	build.gradle	file	inside	the	android	{}	block.	When	you	create	a
new	module,	Android	Studio	automatically	creates	the	debug	and	release	build	types	for	you.	Although	the	debug	build	type
doesn't	appear	in	the	build	configuration	file,	Android	Studio	configures	it	with	debuggable	true.	This	allows	you	to	debug
the	app	on	secure	Android	devices	and	configures	APK	signing	with	a	generic	debug	keystore.	You	can	add	the	the	debug
build	type	to	your	configuration	if	you	want	to	add	or	change	certain	settings.

All	these	changes	made	for	debugging	must	be	removed	from	your	code	before	release	because	they	can	impact	the
execution	and	performance	production	code.

When	you	prepare	your	app	for	release,	you	must	remove	all	the	extra	code	in	your	source	files	that	you	wrote	for	testing
purposes.

In	addition	to	prepping	the	code	itself,	there	are	a	few	other	tasks	you	need	to	complete	in	order	to	get	your	app	ready	to
publish.	These	include:

Removing	logging	statements
Remove	any	calls	to	show	Toasts
Disable	debugging	in	the	Android	manifest	by	either:

Removing	android:debuggable	attribute	from		<application>		tag
Or	setting	android:debuggable	attribute	to	false

Remove	all	debug	tracing	calls	from	your	source	code	files	such	as	startMethodTracing()	and	stopMethodTracing().

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Using	the	Debugger

Learn	more
Debug	Your	App
Write	and	View	Logs
Analyze	a	Stack	Trace

3.1:	The	Android	Studio	Debugger

104

https://developer.android.com/studio/profile/traceview.html#timelinepanel
https://developer.android.com/studio/profile/traceview.html#timelinepanel
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.BuildType.html#com.android.build.gradle.internal.dsl.BuildType:debuggable
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/31_p_using_the_debugger.html
https://developer.android.com/studio/debug/index.html
https://developer.android.com/studio/debug/am-logcat.html
https://developer.android.com/studio/debug/stacktraces.html

Android	Monitor
Using	DDMS
Android	Debug	Bridge
Android	Monitor	Overview
Create	and	Edit	Run/Debug	Configurations
Debugging	and	Testing	in	Android	Studio	(video)

3.1:	The	Android	Studio	Debugger

105

https://developer.android.com/studio/profile/android-monitor.html
https://developer.android.com/studio/profile/ddms.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/profile/android-monitor.html
https://developer.android.com/studio/run/rundebugconfig.html
https://www.youtube.com/watch?v=2I6fuD20qlY

3.2:	Testing	your	App
Contents:

Introduction
About	testing
Setting	up	testing
Creating	and	running	unit	tests
Related	Practical
Learn	More

In	this	chapter	you'll	get	an	overview	of	Android	testing,	and	about	creating	and	running	local	unit	tests	in	Android	Studio
with	JUnit.

About	testing
Even	though	you	have	an	app	that	compiles	and	runs	and	looks	the	way	you	want	it	to	on	different	devices,	you	must	make
sure	that	your	app	will	behave	the	way	you	expect	it	to	in	every	situation,	especially	as	your	app	grows	and	changes.	Even
if	you	try	to	manually	test	your	app	every	time	you	make	a	change	—	a	tedious	prospect	at	best	—	you	might	miss
something	or	not	anticipate	what	end	users	might	do	with	your	app	to	cause	it	to	fail.

Writing	and	running	tests	is	a	critical	part	of	the	software	development	process.	"Test-Driven	Development"	(TDD)	is	a
popular	software	development	philosophy	that	places	tests	at	the	core	of	all	software	development	for	an	application	or
service.This	does	not	negate	the	need	for	further	testing,	it	merely	gives	you	a	solid	baseline	to	work	with.

Testing	your	code	can	help	you	catch	issues	early	in	development—when	they	are	the	least	expensive	to	address	—	and
improve	the	robustness	of	your	code	as	your	app	gets	larger	and	more	complex.	With	tests	in	your	code,	you	can	exercise
small	portions	of	your	app	in	isolation,	and	in	an	automatable	and	repeatable	manner.	Because….the	code	you	write	to	test
your	app	doesn't	end	up	in	the	production	version	of	your	app;	it	lives	only	on	your	development	machine,	alongside	your
app's	code	in	Android	Studio.

Types	of	tests
Android	supports	several	different	kinds	of	tests	and	testing	frameworks.	Two	basic	forms	of	testing	Android	Studio
supports	are	local	unit	tests	and	instrumented	tests.

Local	unit	tests	are	tests	that	are	compiled	and	run	entirely	on	your	local	machine	with	the	Java	Virtual	Machine	(JVM).	Use
local	unit	tests	to	test	the	parts	of	your	app	(such	as	the	internal	logic)	that	do	not	need	access	to	the	Android	framework	or
an	Android	device	or	emulator,	or	those	for	which	you	can	create	fake	("mock"	or	stub)	objects	that	pretend	to	behave	like
the	framework	equivalents.

Instrumented	tests	are	tests	that	run	on	an	Android	device	or	emulator.	These	tests	have	access	to	the	Android	framework
and	to	Instrumentation	information	such	as	the	app's	Context.	You	can	use	instrumented	tests	for	unit	testing,	user	interface
(UI)	testing,	or	integration	testing,	making	sure	the	components	of	your	app	interact	correctly	with	other	apps.	Most
commonly,	you	use	instrumented	tests	for	UI	testing,	which	allows	you	to	test	that	your	app	behaves	correctly	when	a	user
interacts	with	your	app's	activities	or	enters	a	specific	input.

For	most	forms	of	user	interface	testing,	you	use	the	Espresso	framework,	which	allows	you	to	write	automated	UI	tests.
You'll	learn	about	instrumented	tests	and	Espresso	in	a	later	chapter.

Unit	Testing

3.2:	Testing	your	App

106

https://developer.android.com/reference/android/app/Instrumentation.html
https://developer.android.com/reference/android/content/Context.html

Unit	tests	should	be	the	fundamental	tests	in	your	app	testing	strategy.	By	creating	and	running	unit	tests	against	your
code,	you	can	verify	that	the	logic	of	individual	functional	code	areas	or	units	is	correct.	Running	unit	tests	after	every	build
helps	you	catch	and	fix	problems	introduced	by	code	changes	to	your	app.

A	unit	test	generally	exercises	the	functionality	of	the	smallest	possible	unit	of	code	(which	could	be	a	method,	class,	or
component)	in	a	repeatable	way.	Create	unit	tests	when	you	need	to	verify	the	logic	of	specific	code	in	your	app.	For
example,	if	you	are	unit	testing	a	class,	your	test	might	check	that	the	class	is	in	the	right	state.	For	a	method,	you	might
test	its	behavior	for	different	values	of	its	parameters,	especially	null.Typically,	the	unit	of	code	is	tested	in	isolation;	your
test	monitors	changes	to	that	unit	only.	A	mocking	framework	such	as	Mockito	can	be	used	to	isolate	your	unit	from	its
dependencies.You	can	also	write	your	unit	tests	for	Android	in	JUnit	4,	a	common	unit	testing	framework	for	Java	code.

The	Android	Testing	Support	Library

The	Android	Testing	Support	Library	provides	the	infrastructure	and	APIs	for	testing	Android	apps,	including	support	for
JUnit	4.	With	the	testing	support	library	you	can	build	and	run	test	code	for	your	apps.

You	may	already	have	the	Android	Testing	Support	Library	installed	with	Android	Studio.	To	check	for	the	Android	Support
Repository,	follow	these	steps:

1.	 In	Android	Studio	choose	Tools	>	Android	>	SDK	Manager.
2.	 Click	the	SDK	Tools	tab,	and	look	for	the	Support	Repository.
3.	 If	necessary,	update	or	install	the	library.

The	Android	Testing	Support	Library	classes	are	located	under	the	android.support.test	package.	There	are	also	older
testing	APIs	in	android.test.	You	should	use	the	support	libraries	first,	when	given	a	choice	between	the	support	libraries
and	the	older	APIs,	as	the	support	libraries	help	build	and	distribute	tests	in	a	cleaner	and	more	reliable	fashion	than
directly	coding	against	the	API	itself.

Setting	up	testing
To	prepare	your	project	for	testing	in	Android	Studio,	you	need	to:

Organize	your	tests	in	a	source	set.
Configure	your	project's	gradle	dependencies	to	include	testing-related	APIs.

Android	Studio	source	sets

Source	sets	are	a	collection	of	related	code	in	your	project	that	are	for	different	build	targets	or	other	"flavors"	of	your	app.
When	Android	Studio	creates	your	project,	it	creates	three	source	sets	for	you:

The	main	source	set,	for	your	app's	code	and	resources.
The	test	source	set,	for	your	app's	local	unit	tests.
The	androidTest	source	set,	for	Android	instrumented	tests.

Source	sets	appear	in	the	Android	Studio	Android	view	under	the	package	name	for	your	app.	The	main	source	set
includes	just	the	package	name.	The	test	and	androidTest	source	sets	have	the	package	name	followed	by	(test)	or
(androidTest),	respectively.	

3.2:	Testing	your	App

107

These	source	sets	correspond	to	folders	in	the	src	directory	for	your	project.	For	example,	the	files	for	the	test	source	set
are	located	in	src/test/java.

Configure	Gradle	for	test	dependencies

To	use	the	unit	testing	APIs,	you	need	to	configure	the	dependencies	for	your	project.	The	default	gradle	build	file	for	your
project	includes	some	of	these	dependencies	by	default,	but	you	may	need	to	add	more	dependencies	for	additional	testing
features	such	as	matching	or	mocking	frameworks.

In	your	app's	top-level	build.gradle	file,	specify	these	libraries	as	dependencies.	Note	that	the	version	numbers	for	these
libraries	may	have	changed.	If	Android	Studio	reports	a	newer	library,	update	the	number	to	reflect	the	current	version.

dependencies	{

			//	Required	--	JUnit	4	framework

				testCompile	'junit:junit:4.12'

				//	Optional	--	hamcrest	matchers

				testCompile	'org.hamcrest:hamcrest-library:1.3'

				//	Optional	--	Mockito	framework

				testCompile	'org.mockito:mockito-core:1.10.19'

}

After	you	add	dependencies	to	your	build.gradle	file	you	may	have	to	sync	your	project	to	continue.	Click	Sync	Now	in
Android	Studio	when	prompted.

Configure	a	test	runner

A	test	runner	is	a	library	or	set	of	tools	that	enables	testing	to	occur	and	the	results	to	be	printed	to	a	log.	Your	Android
project	has	access	to	a	basic	JUnit	test	runner	as	part	of	the	JUnit4	APIs.	The	Android	test	support	library	includes	a	test
runner	for	instrumented	and	Espresso	tests,		AndroidJUnitRunner	,	which	also	supports	Junit	3	and	4.

This	chapter	only	demonstrates	the	default	runner	for	unit	tests.	To	set	AndroidJUnitRunner	as	the	default	test	runner	in
your	Gradle	project,	add	the	following	dependency	to	your	build.gradle	file.	There	may	already	be	dependencies	in	the
defaultConfig	section.	If	so,	add	the	testInstrumentationRunner	line	to	that	section.

3.2:	Testing	your	App

108

android	{

				defaultConfig	{

								testInstrumentationRunner	"android.support.test.runner.AndroidJUnitRunner"

				}

}

Creating	and	running	unit	tests
Create	your	unit	tests	as	a	generic	Java	file	using	the	JUnit	4	APIs,	and	store	those	tests	in	the	test	source	set.	Each
Android	Studio	project	template	includes	this	source	set	and	a	sample	Java	test	file	called	ExampleUnitTest.

Create	a	new	test	class
To	create	a	new	test	class	file,	add	a	Java	file	to	the	test	source	set	for	your	project.	Test	class	files	for	unit	testing	are
typically	named	for	the	class	in	your	app	that	you	are	testing,	with	"Test"	appended.	For	example,	if	your	have	a	class	called
Calculator	in	your	app,	the	class	for	your	unit	tests	would	be	CalculatorTest.

To	add	a	new	test	class	file,	use	these	steps:

1.	 Expand	the	java	folder	and	the	folder	for	your	app's	test	source	set.	The	existing	unit	test	class	files	are	shown.
2.	 Right-click	on	the	test	source	set	folder	and	select	New	>	Java	Class.
3.	 Name	the	file	and	click	OK.

Write	your	tests

Use	JUnit	4	syntax	and	annotations	to	write	your	tests.	For	example,	the	test	class	shown	below	includes	the	following
annotations:

The	@RunWith	annotation	indicates	the	test	runner	that	should	be	used	for	the	tests	in	this	class.
The	@SmallTest	annotation	indicates	that	this	is	a	small	(and	fast)	test.
The	@Before	annotation	marks	a	method	as	being	the	set	up	for	the	test.
The	@Test	annotation	marks	a	method	as	an	actual	test.

For	more	information	on	JUnit	Annotations,	see	the	JUnit	Reference	documentation.

@RunWith(JUnit4.class)

@SmallTest

public	class	CalculatorTest	{

			private	Calculator	mCalculator;

			//	Set	up	the	environment	for	testing

			@Before

			public	void	setUp()	{

						mCalculator	=	new	Calculator();

			}

			//	test	for	simple	addition

			@Test

			public	void	addTwoNumbers()	{

							double	resultAdd	=	mCalculator.add(1d,	1d);

							assertThat(resultAdd,	is(equalTo(2d)));

			}

}

The	addTwoNumbers()	method	is	the	only	actual	test.	The	key	part	of	a	unit	test	is	the	assertion,	which	is	defined	here	by
the	assertThat()	method.	Assertions	are	expressions	that	must	evaluate	and	result	in	a	value	of	true	for	the	test	to	pass.
JUnit	4	provides	a	number	of	assertion	methods,	but	assertThat()	is	the	most	flexible,	as	it	allows	for	general-purpose
comparison	methods	called	matchers.	The	Hamcrest	framework	is	commonly	used	for	matchers	("Hamcrest"	is	an
anagram	for	matchers).	Hamcrest	includes	a	large	number	of	comparison	methods	as	well	as	enabling	you	to	write	your
own.

3.2:	Testing	your	App

109

http://junit.org/junit4/javadoc/4.12/org/junit/package-summary.html

For	more	information	on	assertions,	see	the	JUnit	reference	documentation	for	the	Assert	class.	For	more	information	on
the	hamcrest	framework,	see	the	Hamcrest	Tutorial.

Note	that	the	addTwoNumbers()	method	in	this	example	includes	only	one	assertion.	The	general	rule	for	unit	tests	is	to
provide	a	separate	test	method	for	every	individual	assertion.	Grouping	more	than	one	assertion	into	a	single	method	can
make	your	tests	harder	to	debug	if	only	one	assertion	fails,	and	obscures	the	tests	that	do	succeed.

Run	your	tests

To	run	your	local	unit	tests,	use	these	steps:

To	run	a	single	test,	right-click	that	test	method	and	select	Run.
To	test	all	the	methods	in	a	test	class,	right-click	the	test	file	in	the	project	view	and	select	Run.
To	run	all	tests	in	a	directory,	right-click	on	the	directory	and	select	Run	tests.

The	project	builds,	if	necessary,	and	the	testing	view	appears	at	the	bottom	of	the	screen.	If	all	the	tests	you	ran	are
successful,	the	progress	bar	at	the	top	of	the	view	turns	green.	A	status	message	in	the	footer	also	reports	"Tests	Passed."

Related	Practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Testing	Apps	With	Unit	Tests

Learn	More
Best	Practices	for	Testing
Getting	Started	with	Testing
Building	Local	Unit	Tests
JUnit	4	Home	Page
JUnit	4	API	Reference
Mockito	Home	Page
Android	Testing	Support	-	Testing	Patterns	(video)
Android	Testing	Codelab
Android	Tools	Protip:	Test	Size	Annotations
The	Benefits	of	Using	assertThat	over	other	Assert	Methods	in	Unit	Tests

3.2:	Testing	your	App

110

http://junit.org/junit4/javadoc/4.12/org/junit/Assert.html
https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/32_p_testing_your_app.html
https://developer.android.com/training/testing/index.html
https://developer.android.com/training/testing/start/index.html
https://developer.android.com/training/testing/unit-testing/local-unit-tests.html
http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/package-summary.html
http://mockito.org/
https://www.youtube.com/watch?v=W8LJjfkTKik
https://codelabs.developers.google.com/codelabs/android-testing/index.html
https://plus.google.com/+AndroidDevelopers/posts/TPy1EeSaSg8
https://objectpartners.com/2013/09/18/the-benefits-of-using-assertthat-over-other-assert-methods-in-unit-tests/

3.3:	The	Android	Support	Library
Contents:

Introduction
About	the	Android	Support	Library
Support	libraries	and	features
Setting	up	and	using	the	Android	Support	Library
Related	Practical
Learn	More

In	this	chapter	you'll	explore	the	Android	Support	Library,	part	of	the	Android	SDK	tools.	You	can	use	the	Android	Support
Library	for	backward-compatible	versions	of	new	Android	features	and	for	additional	UI	elements	and	features	not	included
in	the	standard	Android	framework.

About	the	Android	Support	Library
The	Android	SDK	tools	include	a	number	libraries	collectively	called	the	Android	Support	Library.	This	package	of	libraries
provides	several	features	that	are	not	built	into	the	standard	Android	framework,	and	provides	backward	compatibility	for
older	devices.	Include	any	of	these	libraries	in	your	app	to	incorporate	that	library's	functionality.

Note:	The	Android	Support	library	is	a	different	package	from	the	Android	Testing	Support	library	you	learned	about	in	a
previous	chapter.	The	testing	support	library	provides	tools	and	APIs	just	for	testing,	whereas	the	more	general	support
library	provides	features	of	all	kinds	(but	no	testing).

Features

The	features	of	the	Android	Support	Library	include:

Backward-compatible	versions	of	framework	components.	These	compatibility	libraries	allow	you	to	use	features	and
components	available	on	newer	versions	of	the	Android	platform	even	when	your	app	is	running	on	an	older	platform
version.	For	example,	older	devices	may	not	have	access	to	newer	features	such	as	fragments,	action	bars,	or
Material	Design	elements.	The	support	library	provides	access	to	those	features	on	older	devices.
Additional	layout	and	user	interface	elements.	The	support	library	includes	views	and	layouts	that	can	be	useful	for
your	app,	but	are	not	included	in	the	standard	Android	framework.	For	example,	the	RecyclerView	view	that	you	will
use	in	a	later	chapter	is	part	of	the	support	library.
Support	for	different	device	form	factors,	such	as	TV	or	wearables:	For	example,	the	Leanback	library	includes
components	specific	to	app	development	on	TV	devices.
Design	support:	The	design	support	library	includes	components	to	support	Material	Design	elements	in	your	app,
including	floating	action	buttons	(FAB).	You'll	learn	more	about	Material	Design	in	a	later	chapter.
Various	other	features	such	as	palette	support,	annotations,	percentage-based	layout	dimensions,	and	preferences.

Backward	Compatibility
Support	libraries	allow	apps	running	on	older	versions	of	the	Android	platform	to	support	features	made	available	on	newer
versions	of	the	platform.	For	example,	an	app	running	on	a	version	of	Android	lower	than	5.0	(API	level	21)	that	relies	on
framework	classes	cannot	display	Material	Design	elements,	as	that	version	of	the	Android	framework	doesn't	support
Material	Design.	However,	if	the	app	incorporates	the	v7	appcompat	library,	that	app	has	access	to	many	of	the	features
available	in	API	level	21,	including	support	for	Material	Design.	As	a	result,	your	app	can	deliver	a	more	consistent
experience	across	a	broader	range	of	platform	versions.

3.3:	The	Android	Support	Library

111

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v17/leanback/package-summary.html
http://android-developers.blogspot.com/2015/05/android-design-support-library.html

The	support	library	APIs	also	provide	a	compatibility	layer	between	different	versions	of	the	framework	APIs.	This
compatibility	layer	transparently	intercepts	API	calls	and	changes	either	the	arguments	passed,	handles	the	operation	itself,
or	redirects	the	operation.	In	the	case	of	the	support	libraries,	by	using	the	compatibility	layer's	methods,	you	can	ensure
interoperability	between	older	and	newer	Android	releases.	Each	new	release	of	Android	adds	new	classes	and	methods,
and	possibly	deprecates	some	older	classes	and	methods.	The	support	libraries	include	compatibility	classes	that	can	be
used	for	backward	compatibility.You	can	identify	these	classes	by	their	name	as	thier	names	include	"Compat"	(such	as
ActivityCompat).

When	an	app	calls	one	of	the	support	class's	methods,	the	behavior	of	that	method	depends	on	the	underlying	Android
version.	If	the	device	includes	the	necessary	framework	functionality,	the	support	library	uses	the	framework.	If	the	device	is
running	an	older	version	of	Android,	the	support	library	makes	an	attempt	to	implement	similar	compatible	behavior	with	the
APIs	it	has	available.

For	most	cases	you	do	not	need	to	write	complex	code	that	checks	the	version	of	Android	and	performs	different	operations
based	on	that	version.	You	can	rely	on	the	support	library	to	do	those	checks	and	choose	appropriate	behavior.

When	in	doubt,	choose	a	support	library	compatibility	class	over	the	framework	class.

Versions

Each	package	in	the	support	library	has	a	version	number	in	three	parts	(X.Y.Z)	that	corresponds	to	an	Android	API	level,
and	to	a	particular	revision	of	that	library.	For	example,	a	support	library	version	number	of	22.3.4	is	version	3.4	of	the
support	library	for	API	22.

As	a	general	rule,	use	the	most	recent	version	of	the	support	library	for	the	API	your	app	is	compiled	and	targeted	for,	or	a
newer	version.	For	example,	if	your	app	targets	API	25,	use	the	version	25.X.X	of	the	support	library.

You	can	always	use	a	newer	support	library	than	the	one	for	your	targeted	API.	For	example,	if	your	app	targets	API	22	you
can	use	version	25	or	higher	of	the	support	library.	The	reverse	is	not	true—you	cannot	use	an	older	support	library	with	a
newer	API.	As	a	general	rule,	you	should	try	to	use	the	most	up-to-date	API	and	support	libraries	in	your	app.

API	Levels

In	addition	to	the	actual	version	number,	the	name	of	the	support	library	itself	indicates	the	API	level	that	the	library	is
backward-compatible	with.	You	cannot	use	a	support	library	in	your	app	for	an	API	higher	than	the	minimum	API	your	app
supports.	For	example,	if	the	minimum	API	your	app	supports	is	10,	you	cannot	use	the	v13	support	library	or	v14
preferences	support	library	in	your	app.	If	your	app	uses	multiple	support	libraries,	your	minimum	API	must	be	higher	than
the	largest	number	--	that	is,	if	you	include	support	libraries	for	v7,	v13,	and	v14	your	minimum	API	must	be	at	least	14.

All	of	the	support	libraries,	including	the	v4	and	v7	libraries,	require	a	minimum	SDK	of	API	9.

Support	libraries	and	features
This	section	describes	the	important	features	provided	by	the	libraries	in	the	Android	Support	Library.	You'll	learn	about
many	of	the	features	described	in	this	section	in	a	later	chapter.

v4	support	library

The	v4	support	libraries	include	the	largest	set	of	APIs	compared	to	the	other	libraries,	including	support	for	application
components,	user	interface	features,	accessibility,	data	handling,	network	connectivity,	and	programming	utilities.

The	v4	support	libraries	include	these	specific	components:

v4	compat	library:	Compatibility	wrappers	(classes	that	include	the	word	"Compat")	for	a	number	of	core	framework
APIs.
v4	core-utils	library:	Provides	a	number	of	utility	classes
v4	core-ui	library:	Implements	a	variety	of	UI-related	components.

3.3:	The	Android	Support	Library

112

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html

v4	media-compat	library:	Backports	portions	of	the	media	framework	from	API	21.
v4	fragment	library:	Adds	support	for	Android	fragments.

v7	support	library

The	v7	support	library	includes	both	compatibility	libraries	and	additional	features.

The	v7	support	library	includes	all	the	v4	support	libraries,	so	you	don't	have	to	add	those	separately.	A	dependency	on	the
v7	support	library	is	included	in	every	new	Android	Studio	project,	and	new	activities	in	your	project	extend	from
AppCompatActivity.

The	v7	support	libraries	include	these	specific	components:

v7	appcompat	library:	Adds	support	for	the	Action	Bar	user	interface	design	pattern	and	support	for	material	design
user	interface	implementations.
v7	cardview	library:	Provides	the	CardView	class,	a	view	that	lets	you	show	information	inside	cards.
v7	gridlayout	library:	Includes	the	GridLayout	class,	which	allows	you	to	arrange	user	interface	elements	using	a	grid	of
rectangular	cells
v7	mediarouter	library:	Provides	MediaRouter	and	related	media	classes	that	support	Google	Cast.
v7	palette	library:	Implements	the	Palette	class,	which	lets	you	extract	prominent	colors	from	an	image.
v7	recyclerview	library:	Provides	the	RecyclerView	class,	a	view	for	efficiently	displaying	large	data	sets	by	providing	a
limited	window	of	data	items.
v7	preference	library:	Provides	APIs	to	support	preference	objects	in	app	settings.

Other	libraries

v8	renderscript	library:	Adds	support	for	the	RenderScript,	a	framework	for	running	computationally	intensive	tasks	at
high	performance.
v13	support	library:	Provides	support	for	fragments	with	the	FragmentCompat	class	and	additional	fragment	support
classes.
v14	preference	support	library,	and	v17	preference	support	library	for	TV:	provides	APIs	to	add	support	for	preference
interfaces	on	mobile	devices	and	TV.
v17	leanback	library:	Provides	APIs	to	support	building	user	interfaces	on	TV	devices.
Annotations	support	library:	Contains	APIs	to	support	adding	annotation	metadata	to	your	apps.
Design	support	library:	Adds	support	for	various	Material	Design	components	and	patterns	such	as	navigation	drawers,
floating	action	buttons	(FAB),	snackbars,	and	tabs.
Custom	Tabs	support	library:	Adds	support	for	adding	and	managing	custom	tabs	in	your	apps.
Percent	support	library:	Enables	you	to	add	and	manage	percentage	based	dimensions	in	your	app.
App	recommendation	support	library	for	TV:	Provides	APIs	to	support	adding	content	recommendations	in	your	app
running	on	TV	devices.

Setting	up	and	using	the	Android	Support	Library
The	Android	Support	Library	package	is	part	of	the	Android	SDK,	and	available	to	download	in	the	Android	SDK	manager.
To	set	up	your	project	to	use	any	of	the	support	libraries,	use	these	steps:

1.	 Download	the	support	library	with	the	Android	SDK	manager,	or	verify	that	the	support	libraries	are	already	available.
2.	 Find	the	library	dependency	statement	for	the	support	library	you're	interested	in.
3.	 Add	that	dependency	statement	to	your	build.gradle	file.

Download	the	support	library
In	Android	Studio,	you'll	use	the	Android	Support	Repository—the	repository	in	the	SDK	manager	for	all	support	libraries—
to	get	access	to	the	library	from	within	your	project.

3.3:	The	Android	Support	Library

113

https://developer.android.com/reference/android/support/v7/widget/CardView.html
https://developer.android.com/reference/android/support/v7/widget/GridLayout.html
https://developer.android.com/reference/android/support/v7/media/MediaRouter.html
https://developer.android.com/reference/android/support/v7/graphics/Palette.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/guide/topics/renderscript/compute.html
https://developer.android.com/reference/android/support/v13/app/FragmentCompat.html
https://developer.android.com/design/building-blocks/tabs.html

You	may	already	have	the	Android	support	libraries	downloaded	and	installed	with	Android	Studio.	To	verify	that	you	have
the	support	libraries	available,	follow	these	steps:

1.	 In	Android	Studio,	select	Tools	>	Android	>	SDK	Manager,	or	click	the	SDK	Manager	 	icon.

The	SDK	Manager	preference	pane	appears.	

2.	 Click	the	SDK	Tools	tab	and	expand	Support	Repository.
3.	 Look	for	Android	Support	Repository	in	the	list.

If	Installed	appears	in	the	Status	column,	you're	all	set.	Click	Cancel.
If	Not	installed	or	Update	Available	appears,	click	the	checkbox	next	to	Android	Support	Repository.	A	download
icon	should	appear	next	to	the	checkbox.	Click	OK.

4.	 Click	OK	again,	and	then	Finish	when	the	support	repository	has	been	installed.

Find	a	library	dependency	statement

To	provide	access	to	a	support	library	from	your	project,	you	add	that	library	to	your	gradle	build	file	as	a	dependency.
Dependency	statements	have	a	specific	format	that	includes	the	name	and	version	number	of	the	library.

1.	 Visit	the	Support	Library	Features	page	on	developer.android.com.
2.	 Find	the	library	you're	interested	in	on	that	page,	for	example,	the	Design	Support	Library	for	Material	Design	support.
3.	 Copy	the	dependency	statement	shown	at	the	end	of	the	section.	For	example,	the	dependency	for	the	design	support

library	looks	like	this:

com.android.support:design:23.3.0

The	version	number	at	the	end	of	the	line	may	vary	from	the	one	shown	above.	You	will	update	the	version	number
when	you	add	the	dependency	to	the	build.gradle	file	in	the	next	step.

3.3:	The	Android	Support	Library

114

https://developer.android.com/topic/libraries/support-library/features.html
https://developer.android.com/topic/libraries/support-library/features.html#design

Add	the	dependency	to	your	build.gradle	file

The	gradle	scripts	for	your	project	manage	how	your	app	is	built,	including	specifying	the	dependencies	your	app	has	on
other	libraries.	To	add	a	support	library	to	your	project,	modify	your	gradle	build	files	to	include	the	dependency	to	that
library	you	found	in	the	previous	section.

1.	 In	Android	Studio,	make	sure	the	Project	pane	is	open	and	the	Android	tab	is	clicked.
2.	 Expand	Gradle	Scripts,	if	necessary,	and	open	the	build.gradle	(Module:	app)	file.

Note	that	build.gradle	for	the	overall	project	(build.gradle	(Project:	app_name)	is	a	different	file	from	the	build.gradle	for
the	app	module.

3.	 Locate	the		dependencies		section	of	build.gradle,	near	the	end	of	the	file.

The	dependencies	section	for	a	new	project	may	already	include	dependencies	several	other	libraries.

4.	 Add	a	dependency	for	the	support	library	that	includes	the	statement	you	copied	in	the	previous	task.	For	example,	a
complete	dependency	on	the	design	support	library	looks	like	this:

compile	'com.android.support:design:23.3.0'

5.	 Update	the	version	number,	if	necessary.

If	the	version	number	you	specified	is	lower	than	the	currently	available	library	version	number,	Android	Studio	will
warn	you	that	an	updated	version	is	available.	("a	newer	version	of		com.android.support:design		is	available").	Edit	the
version	number	to	the	updated	version,	or	type	Shift+Enter	and	choose	"Change	to	XX.X.X"	where	XX.X.X	is	the
updated	version	number.

6.	 Click	Sync	Now	to	sync	your	updated	gradle	files	with	the	project,	if	prompted.

Using	the	support	library	APIs

All	the	support	library	classes	are	contained	in	the	android.support	packages,	for	example,
android.support.v7.app.AppCompatActivity	is	the	fully-qualified	name	for	the	AppCompatActivity	class,	from	which	all	of
your	activities	extend.

Support	Library	classes	that	provide	support	for	existing	framework	APIs	typically	have	the	same	name	as	framework	class
but	are	located	in	the	android.support	class	packages.	Make	sure	that	when	you	import	those	classes	you	use	the	right
package	name	for	the	class	you're	interested	in.	For	example,	when	applying	the	ActionBar	class,	use	one	of:

	android.support.v7.app.ActionBar		when	using	the	Support	Library.
	android.app.ActionBar		when	developing	only	for	API	level	11	or	higher.

The	support	library	also	includes	several	View	classes	used	in	XML	layout	files.	In	the	case	of	the	views,	you	must	always
use	the	fully-qualified	name	of	that	view	in	the	XML	element	for	that	view:

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical">

</android.support.design.widget.CoordinatorLayout>

Note:	You'll	learn	about	CoordinatorLayout	in	a	later	chapter.

Checking	system	versions

3.3:	The	Android	Support	Library

115

Although	the	support	library	can	help	you	implement	single	apps	that	work	across	Android	platform	versions,	there	may	be
times	when	you	need	to	check	for	the	version	of	Android	your	app	is	running	on,	and	provide	the	correct	code	for	that
version.

Android	provides	a	unique	code	for	each	platform	version	in	the	Build	constants	class.	Use	these	codes	within	your	app	to
test	for	the	version	and	to	ensure	that	the	code	that	depends	on	higher	API	levels	is	executed	only	when	those	APIs	are
available	on	the	system.

private	void	setUpActionBar()	{

				//	Make	sure	we're	running	on	Honeycomb	or	higher	to	use	ActionBar	APIs

				if	(Build.VERSION.SDK_INT	>=	Build.VERSION_CODES.HONEYCOMB)	{

								ActionBar	actionBar	=	getActionBar();

								actionBar.setDisplayHomeAsUpEnabled(true);

				}	else	{	//	do	something	else	}

}

Related	Practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Using	The	Android	Support	Libraries

Learn	More
Android	Support	Library	(introduction)
Support	Library	Setup
Support	Library	Features
Supporting	Different	Platform	Versions
Picking	your	compileSdkVersion,	minSdkVersion,	and	targetSdkVersion
All	the	Things	Compat
API	Reference	(all	packages	that	start	with	android.support)

3.3:	The	Android	Support	Library

116

https://developer.android.com/reference/android/os/Build.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/33_p_using_support_libraries.html
https://developer.android.com/topic/libraries/support-library/
https://developer.android.com/topic/libraries/support-library/setup.html
https://developer.android.com/topic/libraries/support-library/features.html
https://developer.android.com/training/basics/supporting-devices/platforms.html
https://medium.com/google-developers/picking-your-compilesdkversion-minsdkversion-targetsdkversion-a098a0341ebd#.toysiva92
https://blog.egorand.me/all-the-things-compat/
https://developer.android.com/reference/packages.html

4.1:	User	Input	Controls
Interaction	design	for	user	input
Input	controls	and	view	focus
Using	buttons
Using	input	controls	for	making	choices
Text	input
Using	dialogs	and	pickers
Recognizing	gestures
Related	practical
Learn	more

Interaction	design	for	user	input
The	reason	you	design	an	app	is	to	provide	some	function	to	a	user,	and	in	order	to	use	it,	there	must	be	a	way	for	the	user
to	interact	with	it.	For	an	Android	app,	interaction	typically	includes	tapping,	pressing,	typing,	or	talking	and	listening.	And
the	framework	provides	corresponding	user	interface	(UI)	elements	such	as	buttons,	menus,	keyboards,	text	entry	fields,
and	a	microphone.

In	this	chapter	you	will	learn	how	to	design	an	app's	user	interaction—the	buttons	needed	for	triggering	actions,	and	the	text
entry	fields	for	user	input.	In	your	design	you	need	to	anticipate	what	users	might	need	to	do,	and	ensure	that	the	UI	has
elements	that	are	easy	to	access,	understand,	and	use.	When	your	app	needs	to	get	data	from	the	user,	make	it	easy	and
obvious.	Give	the	user	whatever	assistance	possible	to	provide	any	input	data,	such	as	anticipating	the	source	of	the	data,
minimizing	the	number	of	user	gestures	(such	as	taps	and	swipes),	and	pre-filling	forms	if	possible.

Make	sure	your	app	is	intuitive;	that	is,	your	app	should	perform	as	your	users	expect	it	to	perform.	When	you	rent	a	car,
you	expect	the	steering	wheel,	gear	shift,	headlights,	and	indicators	to	be	in	a	certain	place.	When	you	enter	a	room,	you
expect	the	light	switch	to	be	in	a	certain	place.	When	a	user	starts	an	app,	the	user	expects	buttons	to	be	clickable,
spinners	to	show	a	drop-down	menu,	and	text	editing	fields	to	show	the	onscreen	keyboard	when	tapping	inside	them.
Don't	violate	the	established	expectations,	or	you'll	make	it	harder	for	your	users	to	use	your	app.

Note:	Android	users	have	become	familiar	with	UI	elements	acting	in	a	certain	way,	so	it	is	important	to	be	consistent	with
the	experience	of	other	Android	apps,	and	predictable	in	your	choices	and	their	layout.	Doing	so	helps	you	make	apps	that
satisfy	your	customers.
This	chapter	introduces	the	Android	input	controls,	which	are	the	interactive	components	in	your	app's	user	interface.	You
can	use	a	wide	variety	of	input	controls	in	your	UI,	such	as	text	fields,	buttons,	checkboxes,	radio	buttons,	toggle	buttons,
spinners,	and	more.	

In	the	above	figure:

1.	 Button

4.1:	User	Input	Controls

117

2.	 Text	field
3.	 Seek	bar
4.	 Checkboxes
5.	 Radio	buttons
6.	 Toggle
7.	 Spinner

For	a	brief	description	of	each	input	control,	see	Input	Controls	in	the	developer	documentation.

Input	controls	and	view	focus
Android	applies	a	common	programmatic	abstraction	to	all	input	controls	called	a	view.	The	View	class	represents	the	basic
building	block	for	UI	components,	including	input	controls.	In	previous	chapters,	we	have	learned	that		View		is	the	base
class	for	classes	that	provide	support	for	interactive	UI	components,	such	as	buttons,	text	fields,	and	layout	managers.

If	there	are	many	UI	input	components	in	your	app,	which	one	gets	input	from	the	user	first?	For	example,	if	you	have
several	TextView	objects	and	an	EditText	object	in	your	app,	which	UI	component	(that	is,	which	View)	receives	text	typed
by	the	user	first?

The	View	that	"has	the	focus"	will	be	the	component	that	receives	user	input.

Focus	indicates	which	view	is	currently	selected	to	receive	input.	Focus	can	be	initiated	by	the	user	by	touching	a	View,
such	as	a	TextView	or	an	EditText	object.	You	can	define	a	focus	order	in	which	the	user	is	guided	from	UI	control	to	UI
control	using	the	Return	key,	Tab	key,	or	arrow	keys.	Focus	can	also	be	programmatically	controlled;	a	programmer	can
	requestFocus()		on	any	View	that	is	focusable.

Another	attribute	of	an	input	control	is	clickable.	If	this	attribute	is	(boolean)		true	,	then	the	View	can	react	to	click	events.
As	it	is	with	focus,	clickable	can	be	programmatically	controlled.

The	difference	between	clickable	and	focusable	is	that	clickable	means	the	view	can	be	clicked	or	tapped,	while	focusable
means	that	the	view	is	allowed	to	gain	focus	from	an	input	device	such	as	a	keyboard.	Input	devices	like	keyboards	can't
determine	which	view	to	send	their	input	events	to,	so	they	send	them	to	the	view	that	has	focus.

Android	device	input	methods	are	becoming	quite	diverse:	directional	pads,	trackballs,	touch	screens,	keyboards,	and
more.	Some	devices,	like	tablets	and	smartphones,	are	primarily	navigated	by	touch.	Others,	like	the	Google	TV,	have	no
touch	screen	whatsoever	and	rely	upon	input	devices	such	as	those	with	a	directional	pad	(d-pad).	When	a	user	is
navigating	through	a	user	interface	with	an	input	device	such	as	directional	keys	or	a	trackball,	it	is	necessary	to:

Make	it	visually	clear	which	view	has	focus,	so	that	the	user	knows	where	the	input	goes.
Explicitly	set	the	focus	in	your	code	to	provide	a	path	for	users	to	navigate	through	the	input	elements	using	directional
keys	or	a	trackball.

Fortunately,	in	most	cases	you	don't	need	to	control	focus	yourself,	unless	you	want	to	provide	a	set	of	text	input	fields	and
you	want	the	user	to	be	able	to	move	from	one	field	to	the	next	by	tapping	the	Return	or	Tab	key.	Android	provides	"touch
mode"	for	devices	that	can	be	touched,	such	as	smartphones	and	tablets.	When	the	user	begins	interacting	with	the
interface	by	touching	it,	only	Views	with		isFocusableInTouchMode()		set	to		true		are	focusable,	such	as	text	input	fields.
Other	Views	that	are	touchable,	such	as	buttons,	do	not	take	focus	when	touched.	If	the	user	hits	a	directional	key	or	scrolls
with	a	trackball,	the	device	exits	"touch	mode"	and	finds	a	view	to	take	focus.

Focus	movement	is	based	on	an	algorithm	that	finds	the	nearest	neighbor	in	a	given	direction:

When	the	user	touches	the	screen,	the	topmost	view	under	the	touch	is	in	focus,	providing	touch-access	for	the	child
views	of	the	topmost	view.
If	you	set	an	EditText	view	to	a	single-line,	the	user	can	tap	the	Return	key	on	the	keyboard	to	close	the	keyboard	and
shift	focus	to	the	next	input	control	view	based	on	what	the	Android	system	finds:

The	system	usually	finds	the	nearest	input	control	in	the	same	direction	the	user	was	navigating	(up,	down,	left,	or
right).
If	there	are	multiple	input	controls	that	are	nearby	and	in	the	same	direction,	the	system	scans	from	left	to	right,

4.1:	User	Input	Controls

118

http://developer.android.com/guide/topics/ui/controls.html
https://developer.android.com/reference/android/view/View.html

top	to	bottom.
Focus	can	also	shift	to	a	different	view	if	the	user	interacts	with	a	directional	control,	such	as	a	directional	pad	(d-pad)
or	trackball.

You	can	influence	the	way	Android	handles	focus	by	arranging	input	controls	such	as	EditText	elements	in	a	certain	layout
from	left	to	right	and	top	to	bottom,	so	that	focus	shifts	from	one	to	the	other	in	the	sequence	you	want.

If	the	algorithm	does	not	give	you	what	you	want,	you	can	override	it	by	adding	the		nextFocusDown	,		nextFocusLeft	,
	nextFocusRight	,	and		nextFocusUp		XML	attributes	to	your	layout	file.

1.	 Add	one	of	these	attributes	to	a	view	to	decide	where	to	go	upon	leaving	the	view—in	other	words,	which	view	should
be	the	next	view.

2.	 Define	the	value	of	the	attribute	to	be	the		id		of	the	next	view.	For	example:

<LinearLayout

android:orientation="vertical"

...	>

<Button	android:id="@+id/top"

						android:nextFocusUp="@+id/bottom"

						...	/>

<Button	android:id="@+id/bottom"

						android:nextFocusDown="@+id/top"

						...	/>

</LinearLayout>

Ordinarily	in	a	vertical		LinearLayout	,	navigating	up	from	the	first		Button		would	not	go	anywhere,	nor	would	navigating
down	from	the	second		Button	.	But	in	the	above	example,	the	top		Button		has	defined	the	bottom		button		as	the
	nextFocusUp		(and	vice	versa),	so	the	navigation	focus	will	cycle	from	top-to-bottom	and	bottom-to-top.

If	you'd	like	to	declare	a	View	as	focusable	in	your	UI	(when	it	is	traditionally	not),	add	the		android:focusable		XML	attribute
to	the	View	in	the	layout,	and	set	its	value	to		true	.	You	can	also	declare	a	View	as	focusable	while	in	"touch	mode"	with
	android:focusableInTouchMode		set	to		true	.

You	can	also	explicitly	set	the	focus	or	find	out	which	view	has	focus	by	using	the	following	methods:

Call	onFocusChanged	to	determine	where	focus	came	from.
To	find	out	which	view	currently	has	the	focus,	call	Activity.getCurrentFocus(),	or	use	ViewGroup.getFocusedChild()	to
return	the	focused	child	of	a	view	(if	any).
To	find	the	view	in	the	hierarchy	that	currently	has	focus,	use	findFocus().
Use	requestFocus	to	give	focus	to	a	specific	view.
To	change	whether	a	view	can	take	focus,	call	setFocusable.
To	set	a	listener	that	will	be	notified	when	the	view	gains	or	loses	focus,	use	setOnFocusChangeListener.

Understanding	focus	with	respect	to	input	controls	is	essential	for	understanding	how	the	on-screen	keyboard	works	with
text	editing	views.	For	example,	depending	on	which	attributes	you	use	with	an	EditText	view,	tapping	the	Return	key	in	the
keyboard	can	either	enter	a	new	line,	or	advance	the	focus	to	the	next	view.	You'll	learn	more	about	focus	with	text	editing
views	later	in	this	chapter.

Using	buttons
People	like	to	press	buttons.	Show	someone	a	big	red	button	with	a	message	that	says	"Do	not	press"	and	the	person	will
likely	press	it	for	the	sheer	pleasure	of	pressing	a	big	red	button	(that	the	button	is	forbidden	is	also	a	factor).

You	can	make	a	Button	using:

Only	text,	as	shown	on	the	left	side	of	the	figure	below.
Only	an	icon,	as	shown	in	the	center	of	the	figure	below.
Both	text	and	an	icon,	as	shown	on	the	right	side	of	the	figure	below.

4.1:	User	Input	Controls

119

https://developer.android.com/reference/android/view/View.html#onFocusChanged(boolean,%20int,%20android.graphics.Rect)
https://developer.android.com/reference/android/app/Activity.html#getCurrentFocus()
https://developer.android.com/reference/android/view/ViewGroup.html#getFocusedChild()
https://developer.android.com/reference/android/view/ViewGroup.html#findFocus()
https://developer.android.com/reference/android/view/View.html#requestFocus()
https://developer.android.com/reference/android/view/View.html#setFocusable(boolean)
https://developer.android.com/reference/android/view/View.html#setOnFocusChangeListener(android.view.View.OnFocusChangeListener)
https://play.google.com/store/apps/details?id=com.klikapp.bigredbutton&hl=en
https://developer.android.com/reference/android/widget/Button.html

When	touched	or	clicked,	a	button	performs	an	action.	The	text	and/or	icon	provides	a	hint	of	that	action.	It	is	also	referred

to	as	a	"push-button"	in	Android	documentation.	

A	button	is	a	rectangle	or	rounded	rectangle,	wider	than	it	is	tall,	with	a	descriptive	caption	in	its	center.	Android	buttons
follow	the	guidelines	in	the	the	Android	Material	Design	Specification—you	will	learn	more	about	that	in	a	later	lesson.

Android	offers	several	types	of	buttons,	including	raised	buttons	and	flat	buttons	as	shown	in	the	figure	below.	These
buttons	have	three	states:	normal,	disabled,	and	pressed.	

In	the	above	figure:

1.	 Raised	button	in	three	states:	normal,	disabled,	and	pressed.
2.	 Flat	button	in	three	states:	normal,	disabled,	and	pressed.

Designing	raised	buttons
A	raised	button	is	a	rectangle	or	rounded	rectangle	that	appears	lifted	from	the	screen—the	shading	around	it	indicates	that
it	is	possible	to	touch	or	click	it.	The	raised	button	can	show	text	or	an	icon,	or	show	both	text	and	an	icon.

To	use	raised	buttons	that	conform	to	the	Material	Design	Specification,	follow	these	steps:

1.	 In	your	build.gradle	(Module:	app)	file,	add	the	newest	appcompat	library	to	the		dependencies		section:

		compile	'com.android.support:appcompat-v7:x.x.x.'

In	the	above,	x.x.x.	is	the	version	number.	If	the	version	number	you	specified	is	lower	than	the	currently	available
library	version	number,	Android	Studio	will	warn	you	("a	newer	version	is	available").	Update	the	version	number	to	the
one	Android	Studio	tells	you	to	use.

2.	 Make	your	activity	extend		android.support.v7.app.AppCompatActivity	:

public	class	MainActivity	extends	AppCompatActivity	{		

...

}

3.	 Use	the		Button		element	in	the	layout	file.	There	is	no	need	for	an	additional	attribute,	as	a	raised	button	is	the	default
style.

<Button

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

...	/>

Use	raised	buttons	to	give	more	prominence	to	actions	in	layouts	with	a	lot	of	varying	content.	Raised	buttons	add
dimension	to	a	flat	layout—they	emphasize	functions	on	busy	or	wide	spaces.	Raised	buttons	show	a	background	shadow

when	touched	(pressed)	or	clicked,	as	shown	below.	

4.1:	User	Input	Controls

120

https://design.google.com/resources/

In	the	above	figure:

1.	 Normal	state:	In	its	normal	state,	the	button	looks	like	a	raised	button.
2.	 Disabled	state:	When	the	button	is	disabled,	it	is	grayed	out	and	it's	not	active	in	the	app's	context.	In	most	cases	you

would	hide	an	inactive	button,	but	there	may	be	times	when	you	would	want	to	show	it	as	disabled.
3.	 Pressed	state:	The	pressed	state,	with	a	larger	background	shadow,	indicates	that	the	button	is	being	touched	or

clicked.	When	you	attach	a	callback	to	the	button	(such	as	the	OnClick	attribute),	the	callback	is	called	when	the	button
is	in	this	state.

Creating	a	raised	button	with	text

Some	raised	buttons	are	best	designed	as	text,	without	an	icon,	such	as	a	"Save"	button,	because	an	icon	by	itself	might
not	convey	an	obvious	meaning.	To	create	a	raised	button	with	text,	use	the	Button	class,	which	extends	the	TextView
class.

To	create	a	raised	button	with	just	text,	use	the		Button		class	in	your	XML	layout	as	follows:

<Button

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:text="@string/button_text"

				...	/>

The	best	practice	with	text	buttons	is	to	define	a	very	short	word	as	a	string	resource	(button_text		in	the	above	example),
so	that	the	string	can	be	translated.	For	example,	"Save"	could	be	translated	into	French	as	"Enregistrer"	without	changing
any	of	the	code.

Creating	a	raised	button	with	an	icon	and	text

While	a	button	usually	displays	text	that	tells	the	user	what	the	button	is	for,	raised	buttons	can	also	display	icons	along	with
text.

Choosing	an	icon

To	choose	images	of	a	standard	icon	that	are	resized	for	different	displays,	follow	these	steps:

1.	 Expand	app	>	res	in	the	Project	view,	and	right-click	(or	Command-click)	drawable.
2.	 Choose	New	>	Image	Asset.	The	Configure	Image	Asset	dialog	appears.	

4.1:	User	Input	Controls

121

https://developer.android.com/reference/android/widget/Button.html

3.	 Choose	Action	Bar	and	Tab	Items	in	the	drop-down	menu	of	the	Configure	Image	Asset	dialog	(see	Image	Asset
Studio	for	a	complete	description	of	this	dialog.)

4.	 Click	the	Clipart:	image	(the	Android	logo)	to	select	a	clipart	image	as	the	icon.	A	page	of	icons	appears	as	shown
below.	Click	the	icon	you	want	to	use.	

4.1:	User	Input	Controls

122

http://developer.android.com/tools/help/image-asset-studio.html

5.	 You	may	want	to	make	the	following	adjustments:
Choose	HOLO_DARK	from	the	Theme	drop-down	menu	to	sets	the	icon	to	be	white	against	a	dark-colored	(or
black)	background.
Depending	on	the	shape	of	the	icon,	you	may	want	to	add	padding	to	the	icon	so	that	the	icon	doesn't	crowd	the
text.	Drag	the	Padding	slider	to	the	right	to	add	more	padding.

6.	 Click	Next,	and	then	click	Finish	in	the	Confirm	Icon	Path	dialog.	The	icon	name	should	now	appear	in	the	app	>	res
>	drawable	folder.

Vector	images	of	a	standard	icon	are	automatically	resized	for	different	sizes	of	device	displays.	To	choose	vector	images,
follow	these	steps:

1.	 Expand	app	>	res	in	the	Project	view,	and	right-click	(or	Command-click)	drawable.
2.	 Choose	New	>	Vector	Asset	for	an	icon	that	automatically	resizes	itself	for	each	display.
3.	 The	Vector	Asset	Studio	dialog	appears	for	a	vector	asset.	Click	the	Material	Icon	radio	button,	and	then	click	the

Choose	button	to	choose	an	icon	from	the	Material	Design	spec	(see	Add	Multi-Density	Vector	Graphics	for	a
complete	description	of	this	dialog).

4.	 Click	Next	after	choosing	an	icon,	and	click	Finish	to	finish.	The	icon	name	should	now	appear	in	the	app	>	res	>
drawable	folder.

Adding	the	button	with	text	and	icon	to	the	layout

To	create	a	button	with	text	and	an	icon	as	shown	in	the	figure	below,	use	a		Button		in	your	XML	layout.	Add	the
	android:drawableLeft		attribute	to	draw	the	icon	to	the	left	of	the	button's	text,	as	shown	in	the	figure	below:

4.1:	User	Input	Controls

123

https://developer.android.com/studio/write/vector-asset-studio.html

<Button

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:text="@string/button_text"

				android:drawableLeft="@drawable/button_icon"

				...	/>

Creating	a	raised	button	with	only	an	icon

If	the	icon	is	universally	understood,	you	may	want	to	use	it	instead	of	text.

To	create	a	raised	button	with	just	an	icon	or	image	(no	text),	use	the	ImageButton	class,	which	extends	the	ImageView
class.	You	can	add	an		ImageButton		to	your	XML	layout	as	follows:

<ImageButton

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:src="@drawable/button_icon"

				...	/>

Changing	the	style	and	appearance	of	raised	buttons
The	simplest	way	to	show	a	more	prominent	raised	button	is	to	use	a	different	background	color	for	the	button.	You	can
specify	the		android:background		attribute	with	a	drawable	or	color	resource:

android:background="@color/colorPrimary"

The	appearance	of	your	button—the	background	color	and	font—may	vary	from	one	device	to	another,	because	devices	by
different	manufacturers	often	have	different	default	styles	for	input	controls.	You	can	control	exactly	how	your	buttons	and
other	input	controls	are	styled	using	a	theme	that	you	apply	to	your	entire	app.

For	instance,	to	ensure	that	all	devices	that	can	run	the	Holo	theme	will	use	the	Holo	theme	for	your	app,	declare	the
following	in	the		<application>		element	of	the	AndroidManifest.xml	file:

android:theme="@android:style/Theme.Holo"

After	adding	the	above	declaration,	the	app	will	be	displayed	using	the	theme.

Apps	designed	for	Android	4.0	and	higher	can	also	use	the	DeviceDefault	public	theme	family.	DeviceDefault	themes	are
aliases	for	the	device's	native	look	and	feel.	The	DeviceDefault	theme	family	and	widget	style	family	offer	ways	for
developers	to	target	the	device's	native	theme	with	all	customizations	intact.

For	Android	apps	running	on	4.0	and	newer,	you	have	the	following	options:

Use	a	theme,	such	as	one	of	the	Holo	themes,	so	that	your	app	has	the	exact	same	look	across	all	Android	devices
running	4.0	or	newer.	In	this	case,	the	app's	look	does	not	change	when	running	on	a	device	with	a	different	default
skin	or	custom	skin.
Use	one	of	the	DeviceDefault	themes	so	that	your	app	takes	on	the	look	of	the	device's	default	skin.
Don't	use	a	theme,	but	you	may	have	unpredictable	results	on	some	devices.

If	you're	not	already	familiar	with	Android's	style	and	theme	system,	you	should	read	Styles	and	Themes.	The	blog	post
"Holo	Everywhere"	provides	information	about	using	the	Holo	theme	while	supporting	older	devices.

4.1:	User	Input	Controls

124

https://developer.android.com/reference/android/widget/ImageButton.html
https://developer.android.com/reference/android/widget/ImageView.html
http://developer.android.com/guide/topics/ui/themes.html
http://android-developers.blogspot.com/2012/01/holo-everywhere.html

For	a	guide	on	styling	and	customizing	buttons	using	XML,	see	Buttons	(in	the	"User	Interface"	section	of	the	Android
developer	guide).	For	a	comprehensive	guide	to	designing	buttons,	see	"Components	-	Buttons"	in	the	Material	Design
Specification.

Designing	flat	buttons

A	flat	button,	also	known	as	a	borderless	button,	is	a	text-only	button	that	appears	flat	on	the	screen	without	a	shadow.	The
major	benefit	of	flat	buttons	is	simplicity	— 	they	minimize	distraction	from	content.	Flat	buttons	are	useful	when	you	have	a
dialog,	as	shown	in	the	figure	below,	which	requires	user	input	or	interaction.	In	this	case,	you	would	want	to	have	the	same
font	and	style	as	the	text	surrounding	the	button.	This	keeps	the	look	and	feel	the	same	across	all	elements	within	the

dialog.	

Flat	buttons,	shown	below,	resemble	basic	buttons	except	that	they	have	no	borders	or	background,	but	still	change
appearance	during	different	states.	A	flat	button	shows	an	ink	shade	around	it	when	pressed	(touched	or	clicked).	

In	the	above	figure:

1.	 Normal	state:	In	its	normal	state,	the	button	looks	just	like	ordinary	text.
2.	 Disabled	state:	When	the	text	is	grayed	out,	the	button	is	not	active	in	the	app's	context.
3.	 Pressed	state:	The	pressed	state,	with	a	background	shadow,	indicates	that	the	button	is	being	touched	or	clicked.

When	you	attach	a	callback	to	the	button	(such	as	the		android:onClick		attribute),	the	callback	is	called	when	the
button	is	in	this	state.
Note:	If	you	use	a	flat	button	within	a	layout,	be	sure	to	use	padding	to	set	it	off	from	the	surrounding	text,	so	that	the
user	can	easily	see	it.

To	create	a	flat	button,	use	the	Button	class.	Add	a		Button		to	your	XML	layout,	and	apply		"?
android:attr/borderlessButtonStyle"		as	the		style		attribute:

<Button

				android:id="@+id/button_send"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:text="@string/button_send"

				android:onClick="sendMessage"

				style="?android:attr/borderlessButtonStyle"	/>

4.1:	User	Input	Controls

125

https://developer.android.com/guide/topics/ui/controls/button.html
https://material.google.com/components/buttons.html
https://developer.android.com/reference/android/widget/Button.html

Designing	images	as	buttons

You	can	turn	any	View,	such	as	an	ImageView,	into	a	button	by	adding	the		android:onClick		attribute	in	the	XML	layout.
The	image	for	the	ImageView	must	already	be	stored	in	the	drawables	folder	of	your	project.

Note:	To	bring	images	into	your	Android	Studio	project,	create	or	save	the	image	in	JPEG	format,	and	copy	the	image	file
into	the	app	>	src	>	main	>	res	>	drawables	folder	of	your	project.	For	more	information	about	drawable	resources,	see
Drawable	Resources	in	the	App	Resources	section	of	the	Android	Developer	Guide.
If	you	are	using	multiple	images	as	buttons,	arrange	them	in	a	viewgroup	so	that	they	are	grouped	together.	For	example,
the	following	images	in	the	drawable	folder	(icecream_circle.jpg,	donut_circle.jpg,	and	froyo_circle.jpg)	are	defined	for
ImageViews	that	are	grouped	in	a	LinearLayout	set	to	a	horizontal	orientation	so	that	they	appear	side-by-side:

<LinearLayout

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:orientation="horizontal"

								android:layout_marginTop="260dp">

								<ImageView

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:src="@drawable/icecream_circle"

												android:onClick="orderIcecream"/>

								<ImageView

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:src="@drawable/donut_circle"

												android:onClick="orderDonut"/>

								<ImageView

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:src="@drawable/froyo_circle"

												android:onClick="orderFroyo"/>

				</LinearLayout>

Designing	a	floating	action	button

A	floating	action	button,	shown	below	as	#1	in	the	figure	below,	is	a	circular	button	that	appears	to	float	above	the	layout.

4.1:	User	Input	Controls

126

https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/guide/topics/resources/drawable-resource.html

You	should	use	a	floating	action	button	only	to	represent	the	primary	action	for	a	screen.	For	example,	the	primary	action
for	the	Contacts	app's	main	screen	is	adding	a	contact,	as	shown	in	the	figure	above.	A	floating	action	button	is	the	right
choice	if	your	app	requires	an	action	to	be	persistent	and	readily	available	on	a	screen.	Only	one	floating	action	button	is
recommended	per	screen.

The	floating	action	button	uses	the	same	type	of	icons	that	you	would	use	for	a	button	with	an	icon,	or	for	actions	in	the	app
bar	at	the	top	of	the	screen.	You	can	add	an	icon	as	described	previously	in	"Choosing	an	icon	for	the	button".

To	use	a	floating	action	button	in	your	Android	Studio	project,	you	must	add	the	following	statement	to	your	build.gradle
(Module:	app)	file	in	the		dependencies		section:

compile	'com.android.support:design:23.4.0'

Note:	The	version	number	at	the	end	of	the	statement	may	change;	use	the	newest	version	suggested	by	Android	Studio.
To	create	a	floating	action	button,	use	the	FloatingActionButton	class,	which	extends	the	ImageButton	class.	You	can	add	a
floating	action	button	to	your	XML	layout	as	follows:

<android.support.design.widget.FloatingActionButton

								android:id="@+id/fab"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_gravity="bottom|end"

								android:layout_margin="@dimen/fab_margin"

								android:src="@drawable/ic_fab_chat_button_white"	/>

Floating	action	buttons,	by	default,	are	56	x	56	dp	in	size.	It	is	best	to	use	the	default	size	unless	you	need	the	smaller
version	to	create	visual	continuity	with	other	screen	elements.

You	can	set	the	mini	size	(30	x	40	dp)	with	the		app:fabSize		attribute:

app:fabSize="mini"

To	set	it	back	to	the	default	size	(56	x	56	dp):

app:fabSize="normal"

4.1:	User	Input	Controls

127

https://developer.android.com/reference/android/support/design/widget/FloatingActionButton.html
https://developer.android.com/reference/android/widget/ImageButton.html

For	more	design	instructions	involving	floating	action	buttons,	see	Components–	Buttons:	Floating	Action	Button	in	the
Material	Design	Spec.

Responding	to	button-click	events

Use	an	event	listener	called	OnClickListener,	which	is	an	interface	in	the	View	class,	to	respond	to	the	click	event	that
occurs	when	the	user	taps	or	clicks	a	clickable	object,	such	as	a	Button,	ImageButton,	or	FloatingActionButton.	For	more
information	on	event	listeners,	or	other	types	of	UI	events,	read	the	Input	Events	section	of	the	Android	Developer
Documentation.

Adding	onClick	to	the	layout	element

To	set	up	an	OnClickListener	for	the	clickable	object	in	your	Activity	code	and	assign	a	callback	method,	use	the
	android:onClick		attribute	with	the	clickable	object's	element	in	the	XML	layout.	For	example:

<Button

				android:id="@+id/button_send"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:text="@string/button_send"

				android:onClick="sendMessage"	/>

In	this	case,	when	a	user	clicks	the	button,	the	Android	system	calls	the	Activity's		sendMessage()		method:

public	void	sendMessage(View	view)	{

				//	Do	something	in	response	to	button	click

}

The	method	you	declare	as	the		android:onClick		attribute	must	be		public	,	return		void	,	and	define	a		View		as	its	only
parameter	(this	will	be	the	view	that	was	clicked).	Use	the	method	to	perform	a	task	or	call	other	methods	as	a	response	to
the	button	click.

Using	the	button-listener	design	pattern

You	can	also	handle	the	click	event	programmatically	using	the	button-listener	design	pattern	(see	figure	below).	For	more
information	on	the	"listener"	design	pattern,	see	Creating	Custom	Listeners.

Use	the	event	listener	View.OnClickListener,	which	is	an	interface	in	the	View	class	that	contains	a	single	callback	method,
onClick().	The	method	is	called	by	the	Android	framework	when	the	view	is	triggered	by	user	interaction.

The	event	listener	must	already	be	registered	to	the	view	in	order	to	be	called	for	the	event.	Follow	these	steps	to	register
the	listener	and	use	it	(refer	to	the	figure	below	the	steps):

1.	 Use	the	findViewById()	method	of	the	View	class	to	find	the	button	in	the	XML	layout	file:

Button	button	=	(Button)	findViewById(R.id.button_send);

2.	 Get	a	new		View.OnClickListener		object	and	register	it	to	the	button	by	calling	the	setOnClickListener()	method.	The
argument	to		setOnClickListener()		takes	an	object	that	implements	the	View.OnClickListener	interface,	which	has	one
method:		onClick()	.

button.setOnClickListener(new	View.OnClickListener()	{

...

3.	 Define	the		onClick()		method	to	be		public	,	return		void	,	and	define	a		View		as	its	only	parameter:

4.1:	User	Input	Controls

128

https://material.google.com/components/buttons-floating-action-button.html
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/ui-events.html#EventListeners
https://developer.android.com/guide/topics/ui/ui-events.html
http://guides.codepath.com/android/Creating-Custom-Listeners
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.OnClickListener.html#onClick(android.view.View)
https://developer.android.com/reference/android/view/View.html#findViewById(int)
https://developer.android.com/reference/android/view/View.html#setOnClickListener(android.view.View.OnClickListener)

public	void	onClick(View	v)	{

				//	Do	something	in	response	to	button	click

}

4.	 Create	a	method	to	do	something	in	response	to	the	button	click,	such	as	perform	an	action.	

To	set	the	click	listener	programmatically	instead	of	with	the	onClick	attribute,	customize	the	View.OnClickListener	class
and	override	its		onClick()		handler	to	perform	some	action,	as	shown	below:

fab.setOnClickListener(new	View.OnClickListener()	{

												@Override

												public	void	onClick(View	view)	{

																//	Add	a	new	word	to	the	wordList.

												}

								});

Using	the	event	listener	interface	for	other	events
Other	events	can	occur	with	UI	elements,	and	you	can	use	the	callback	methods	already	defined	in	the	event	listener
interfaces	to	handle	them.	The	methods	are	called	by	the	Android	framework	when	the	view—to	which	the	listener	has
been	registered—is	triggered	by	user	interaction.	You	therefore	must	set	the	appropriate	listener	to	use	the	method.	The
following	are	some	of	the	listeners	available	in	the	Android	framework	and	the	callback	methods	associated	with	each	one:

	onClick()		from	View.OnClickListener:	Handles	a	click	event	in	which	the	user	touches	and	then	releases	an	area	of
the	device	display	occupied	by	a	view.	The	onClick()	callback	has	no	return	value.
	onLongClick()		from	View.OnLongClickListener:	Handles	an	event	in	which	the	user	maintains	the	touch	over	a	view
for	an	extended	period.	This	returns	a	boolean	to	indicate	whether	you	have	consumed	the	event	and	it	should	not	be
carried	further.	That	is,	return		true		to	indicate	that	you	have	handled	the	event	and	it	should	stop	here;	return		false	
if	you	have	not	handled	it	and/or	the	event	should	continue	to	any	other	on-click	listeners.
	onTouch()		from	View.OnTouchListener:	Handles	any	form	of	touch	contact	with	the	screen	including	individual	or
multiple	touches	and	gesture	motions,	including	a	press,	a	release,	or	any	movement	gesture	on	the	screen	(within	the
bounds	of	the	UI	element).	A	MotionEvent	is	passed	as	an	argument,	which	includes	directional	information,	and	it
returns	a	boolean	to	indicate	whether	your	listener	consumes	this	event.
	onFocusChange()		from	View.OnFocusChangeListener:	Handles	when	focus	moves	away	from	the	current	view	as	the
result	of	interaction	with	a	trackball	or	navigation	key.
	onKey()		from	View.OnKeyListener:	Handles	when	a	key	on	a	hardware	device	is	pressed	while	a	view	has	focus.

Using	input	controls	for	making	choices
Android	offers	ready-made	input	controls	for	the	user	to	select	one	or	more	choices:

Checkboxes:	Select	one	or	more	values	from	a	set	of	values	by	clicking	each	value's	checkbox.
Radio	buttons:	Select	only	one	value	from	a	set	of	values	by	clicking	the	value's	circular	"radio"	button.	If	you	are
providing	only	two	or	three	choices,	you	might	want	to	use	radio	buttons	for	the	choices	if	you	have	room	in	your	layout

4.1:	User	Input	Controls

129

https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/view/View.OnLongClickListener.html
https://developer.android.com/reference/android/view/View.OnTouchListener.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/View.OnFocusChangeListener.html
https://developer.android.com/reference/android/view/View.OnKeyListener.html

for	them.
Toggle	button:	Select	one	state	out	of	two	or	more	states.	Toggle	buttons	usually	offer	two	visible	states,	such	as	"on"
and	"off".
Spinner:	Select	one	value	from	a	set	of	values	in	a	drop-down	menu.	Only	one	value	can	be	selected.	Spinners	are
useful	for	three	or	more	choices,	and	takes	up	little	room	in	your	layout.

Checkboxes

Use	checkboxes	when	you	have	a	list	of	options	and	the	user	may	select	any	number	of	choices,	including	no	choices.
Each	checkbox	is	independent	of	the	other	checkboxes	in	the	list,	so	checking	one	box	doesn't	uncheck	the	others.	(If	you
want	to	limit	the	user's	selection	to	only	one	item	of	a	set,	use	radio	buttons.)	A	user	can	also	uncheck	an	already	checked
checkbox.

Users	expect	checkboxes	to	appear	in	a	vertical	list,	like	a	to-do	list,	or	side-by-side	horizontally	if	the	labels	are	short.	

Each	checkbox	is	a	separate	instance	of	the	CheckBox	class.	You	create	each	checkbox	using	a		CheckBox		element	in	your
XML	layout.	To	create	multiple	checkboxes	in	a	vertical	orientation,	use	a	vertical	LinearLayout:

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

								android:orientation="vertical"

								android:layout_width="fill_parent"

								android:layout_height="fill_parent">

								<CheckBox	android:id="@+id/checkbox1_chocolate"

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:text="@string/chocolate_syrup"	/>

								<CheckBox	android:id="@+id/checkbox2_sprinkles"

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:text="@string/sprinkles"	/>

								<CheckBox	android:id="@+id/checkbox3_nuts"

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:text="@string/crushed_nuts"	/>

</LinearLayout>

Typically	programs	retrieve	the	state	of	checkboxes	when	a	user	touches	or	clicks	a	Submit	or	Done	button	in	the	same
activity,	which	uses	the		android:onClick		attribute	to	call	a	method	such	as		onSubmit()	:

<Button

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:text="@string/submit"

			android:onClick="onSubmit"/>

The	callback	method—	onSubmit()		in	the	above		Button		example—must	be		public	,	return		void	,	and	define	a		View		as
a	parameter	(the	view	that	was	clicked).	In	this	method	you	can	determine	if	a	checkbox	is	selected	by	using	the
isChecked()	method	(inherited	from	CompoundButton).	The		isChecked()		method	will	return	a	(boolean)		true		if	there	is	a
checkmark	in	the	box.	For	example,	the	following	statement	assigns	the	boolean	value	of		true		or		false		to		checked	
depending	on	whether	the	checkbox	is	checked:

boolean	checked	=	((CheckBox)	view).isChecked();

4.1:	User	Input	Controls

130

https://developer.android.com/reference/android/widget/CheckBox.html
https://developer.android.com/reference/android/widget/CompoundButton.html#isChecked()

The	following	code	snippet	shows	how	the		onSubmit()		method	might	check	to	see	which	checkbox	is	selected,	using	the
resource		id		for	the	checkbox	element:

public	void	onSubmit(View	view){

			StringBuffer	toppings	=	new

																			StringBuffer().append(getString(R.string.toppings_label));

			if		(((CheckBox)	findViewById(R.id.checkbox1_chocolate)).isChecked())	{

						toppings.append(getString(R.string.chocolate_syrup_text));

			}

			if		(((CheckBox)	findViewById(R.id.checkbox2_sprinkles)).isChecked())	{

						toppings.append(getString(R.string.sprinkles_text));

			}

			if		(((CheckBox)	findViewById(R.id.checkbox3_nuts)).isChecked())	{

						toppings.append(getString(R.string.crushed_nuts_text));

			}

...

}

Tip:	To	respond	quickly	to	a	checkbox—such	as	display	a	message	(like	an	alert),	or	show	a	set	of	further	options—you	can
use	the		android:onClick		attribute	in	the	XML	layout	for	each	checkbox	to	declare	the	callback	method	for	that	checkbox,
which	must	be	defined	within	the	activity	that	hosts	this	layout.

For	more	information	about	checkboxes,	see	Checkboxes	in	the	User	Interface	section	of	the	Android	Developer
Documentation.

Radio	buttons

Use	radio	buttons	when	you	have	two	or	more	options	that	are	mutually	exclusive—the	user	must	select	only	one	of	them.

(If	you	want	to	enable	more	than	one	selection	from	the	set,	use	checkboxes.)	

Users	expect	radio	buttons	to	appear	as	a	vertical	list,	or	side-by-side	horizontally	if	the	labels	are	short.

Each	radio	button	is	an	instance	of	the	RadioButton	class.	Radio	buttons	are	normally	used	together	in	a	RadioGroup.
When	several	radio	buttons	live	inside	a	radio	group,	checking	one	radio	button	unchecks	all	the	others.	You	create	each
radio	button	using	a	RadioButton	element	in	your	XML	layout	within	a	RadioGroup	view	group:

<RadioGroup

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:orientation="vertical"

								android:layout_below="@id/orderintrotext">

								<RadioButton

												android:id="@+id/sameday"

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:text="@string/same_day_messenger_service"

												android:onClick="onRadioButtonClicked"/>

								<RadioButton

												android:id="@+id/nextday"

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:text="@string/next_day_ground_delivery"

												android:onClick="onRadioButtonClicked"/>

								<RadioButton

												android:id="@+id/pickup"

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:text="@string/pick_up"

												android:onClick="onRadioButtonClicked"/>

				</RadioGroup>

4.1:	User	Input	Controls

131

https://developer.android.com/guide/topics/ui/controls/checkbox.html
https://developer.android.com/reference/android/widget/RadioButton.html
https://developer.android.com/reference/android/widget/RadioGroup.html

Use	the		android:onClick		attribute	for	each	radio	button	to	declare	the	click	event	handler	method	for	the	radio	button,
which	must	be	defined	within	the	activity	that	hosts	this	layout.	In	the	above	layout,	clicking	any	radio	button	calls	the	same
	onRadioButtonClicked()		method	in	the	activity,	but	you	could	create	separate	methods	in	the	activity	and	declare	them	in
each	radio	button's		android:onClick		attribute.

The	click	event	handler	method	must	be		public	,	return		void	,	and	define	a		View		as	its	only	parameter	(the	view	that	was
clicked).	The	following	shows	one	method,		onRadioButtonClicked()	,	for	all	radio	buttons,	using		switch	case		statements	to
check	the	resource		id		for	the	radio	button	element	to	determine	which	one	was	checked:

public	void	onRadioButtonClicked(View	view)	{

			//	Check	to	see	if	a	button	has	been	clicked.

			boolean	checked	=	((RadioButton)	view).isChecked();

			//	Check	which	radio	button	was	clicked.

			switch(view.getId())	{

						case	R.id.sameday:

									if	(checked)

												//	Same	day	service

												break;

						case	R.id.nextday:

									if	(checked)

												//	Next	day	delivery

												break;

						case	R.id.pickup:

									if	(checked)

												//	Pick	up

												break;

			}

}

Tip:	To	give	users	a	chance	to	review	their	radio	button	selection	before	the	app	responds,	you	could	implement	a	Submit
or	Done	button	as	shown	previously	with	checkboxes,	and	remove	the		android:onClick		attributes	from	the	radio	buttons.
Then	add	the		onRadioButtonClicked()		method	to	the		android:onClick		attribute	for	the	Submit	or	Done	button.

For	more	information	about	radio	buttons,	see	"Radio	Buttons"	in	the	User	Interface	section	of	the	Android	Developer
Documentation.

Toggle	buttons	and	switches

A	toggle	input	control	lets	the	user	change	a	setting	between	two	states.	Android	provides	the	ToggleButton	class,	which
shows	a	raised	button	with	"OFF"	and	"ON".

Examples	of	toggles	include	the	On/Off	switches	for	Wi-Fi,	Bluetooth,	and	other	options	in	the	Settings	app.

Android	also	provides	the	Switch	class,	which	is	a	short	slider	that	looks	like	a	rocker	switch	offering	two	states	(on	and	off).
Both	are	extensions	of	the	CompoundButton	class.

Using	a	toggle	button

Create	a	toggle	button	by	using	a		ToggleButton		element	in	your	XML	layout:

4.1:	User	Input	Controls

132

https://developer.android.com/guide/topics/ui/controls/radiobutton.html
https://developer.android.com/reference/android/widget/ToggleButton.html
https://developer.android.com/reference/android/widget/Switch.html

<ToggleButton

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:id="@+id/my_toggle"

								android:text="

								android:onClick="onToggleClick"/>

Tip:	The	android:text	attribute	does	not	provide	a	text	label	for	a	toggle	button—the	toggle	button	always	shows	either	"ON"
or	"OFF".	To	provide	a	text	label	next	to	(or	above)	the	toggle	button,	use	a	separate		TextView	.

To	respond	to	the	toggle	tap,	declare	an		android:onClick		callback	method	for	the		ToggleButton	.	The	method	must	be
defined	in	the	activity	hosting	the	layout,	and	it	must	be		public	,	return		void	,	and	define	a		View		as	its	only	parameter
(this	will	be	the	view	that	was	clicked).	Use	CompoundButton.OnCheckedChangeListener()	to	detect	the	state	change	of
the	toggle.	Create	a		CompoundButton.OnCheckedChangeListener		object	and	assign	it	to	the	button	by	calling
	setOnCheckedChangeListener()	.	For	example,	the		onToggleClick()		method	checks	whether	the	toggle	is	on	or	off,	and
displays	a	toast	message:

public	void	onToggleClick(View	view)	{

			ToggleButton	toggle	=	(ToggleButton)	findViewById(R.id.my_toggle);

			toggle.setOnCheckedChangeListener(new

																														CompoundButton.OnCheckedChangeListener()	{

						public	void	onCheckedChanged(CompoundButton	buttonView,

																														boolean	isChecked)	{

									StringBuffer	onOff	=	new	StringBuffer().append("On	or	off?	");

									if	(isChecked)	{	//	The	toggle	is	enabled

												onOff.append("ON	");

									}	else	{	//	The	toggle	is	disabled

												onOff.append("OFF	");

									}

									Toast.makeText(getApplicationContext(),	onOff.toString(),

																														Toast.LENGTH_SHORT).show();

						}

			});

}

Tip:	You	can	also	programmatically	change	the	state	of	a	ToggleButton	using	the	setChecked(boolean)	method.	Be	aware,
however,	that	the	method	specified	by	the		android:onClick()		attribute	will	not	be	executed	in	this	case.

Using	a	switch

A	switch	is	a	separate	instance	of	the	Switch	class,	which	extends	the	CompoundButton	class	just	like	ToggleButton.
Create	a	toggle	switch	by	using	a		Switch		element	in	your	XML	layout:

<Switch

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:id="@+id/my_switch"

								android:text="@string/turn_on_or_off"

								android:onClick="onSwitchClick"/>

The	android:text	attribute	defines	a	string	that	appears	to	the	left	of	the	switch,	as	shown	below:	

To	respond	to	the	switch	tap,	declare	an		android:onClick		callback	method	for	the		Switch	—the	code	is	basically	the	same
as	for	a		ToggleButton	.	The	method	must	be	defined	in	the	activity	hosting	the	layout,	and	it	must	be		public	,	return		void	,
and	define	a		View		as	its	only	parameter	(this	will	be	the	view	that	was	clicked).	Use

4.1:	User	Input	Controls

133

https://developer.android.com/reference/android/widget/CompoundButton.OnCheckedChangeListener.html
https://developer.android.com/reference/android/widget/CompoundButton.html#setChecked(boolean)
https://developer.android.com/reference/android/widget/Switch.html

CompoundButton.OnCheckedChangeListener()	to	detect	the	state	change	of	the	switch.	Create	a
	CompoundButton.OnCheckedChangeListener		object	and	assign	it	to	the	button	by	calling		setOnCheckedChangeListener()	.	For
example,	the		onSwitchClick()		method	checks	whether	the	switch	is	on	or	off,	and	displays	a	toast	message:

public	void	onSwitchClick(View	view)	{

			Switch	aSwitch	=	(Switch)	findViewById(R.id.my_switch);

			aSwitch.setOnCheckedChangeListener(new

																													CompoundButton.OnCheckedChangeListener()	{

						public	void	onCheckedChanged(CompoundButton	buttonView,

																													boolean	isChecked)	{

									StringBuffer	onOff	=	new	StringBuffer().append("On	or	off?	");

									if	(isChecked)	{	//	The	switch	is	enabled

												onOff.append("ON	");

									}	else	{	//	The	switch	is	disabled

												onOff.append("OFF	");

									}

									Toast.makeText(getApplicationContext(),	onOff.toString(),

																													Toast.LENGTH_SHORT).show();

						}

			});

}

Tip:	You	can	also	programmatically	change	the	state	of	a	Switch	using	the	setChecked(boolean)	method.	Be	aware,
however,	that	the	method	specified	by	the		android:onClick()		attribute	will	not	be	executed	in	this	case.

For	more	information	about	toggles,	see	"Toggle	Buttons"	in	the	User	Interface	section	of	the	Android	Developer
Documentation.

Spinners

A	spinner	provides	a	quick	way	to	select	one	value	from	a	set.	Touching	the	spinner	displays	a	drop-down	list	with	all

available	values,	from	which	the	user	can	select	one.	

If	you	have	a	long	list	of	choices,	a	spinner	may	extend	beyond	your	layout,	forcing	the	user	to	scroll	it.	A	spinner	scrolls
automatically,	with	no	extra	code	needed.	However,	scrolling	a	long	list	(such	as	a	list	of	countries)	is	not	recommended	as
it	can	be	hard	to	select	an	item.

To	create	a	spinner,	use	the	Spinner	class,	which	creates	a	view	that	displays	individual	spinner	values	as	child	views,	and
lets	the	user	pick	one.	Follow	these	steps:

1.	 Create	a		Spinner		element	in	your	XML	layout,	and	specify	its	values	using	an	array	and	an	ArrayAdapter.
2.	 Create	the	spinner	and	its	adapter	using	the	SpinnerAdapter	class.
3.	 To	define	the	selection	callback	for	the	spinner,	update	the	Activity	that	uses	the	spinner	to	implement	the

AdapterView.OnItemSelectedListener	interface.

Create	the	spinner	UI	element

4.1:	User	Input	Controls

134

https://developer.android.com/reference/android/widget/CompoundButton.OnCheckedChangeListener.html
https://developer.android.com/reference/android/widget/CompoundButton.html#setChecked(boolean)
https://developer.android.com/guide/topics/ui/controls/togglebutton.html
https://developer.android.com/reference/android/widget/Spinner.html
https://developer.android.com/reference/android/widget/ArrayAdapter.html
https://developer.android.com/reference/android/widget/SpinnerAdapter.html
https://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html

To	create	a	spinner	in	your	XML	layout,	add	a	Spinner	element,	which	provides	the	drop-down	list:

<Spinner

			android:id="@+id/label_spinner"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content">

</Spinner>

Specify	the	values	for	the	spinner

You	add	an	adapter	that	fills	the	spinner	list	with	values.	An	adapter	is	like	a	bridge,	or	intermediary,	between	two
incompatible	interfaces.	For	example,	a	memory	card	reader	acts	as	an	adapter	between	the	memory	card	and	a	laptop.
You	plug	the	memory	card	into	the	card	reader,	and	plug	the	card	reader	into	the	laptop,	so	that	the	laptop	can	read	the
memory	card.

The	spinner-adapter	pattern	takes	the	data	set	you've	specified	and	makes	a	view	for	each	item	in	the	data	set,	as	shown
in	the	figure	below.	

The	SpinnerAdapter	class,	which	implements	the	Adapter	class,	allows	you	to	define	two	different	views:	one	that	shows
the	data	values	in	the	spinner	itself,	and	one	that	shows	the	data	in	the	drop-down	list	when	the	spinner	is	touched	or
clicked.

The	values	you	provide	for	the	spinner	can	come	from	any	source,	but	must	be	provided	through	a	SpinnerAdapter,	such
as	an	ArrayAdapter	if	the	values	are	available	in	an	array.	The	following	shows	a	simple	array	called		labels_array		of
predetermined	values	in	the	strings.xml	file:

<string-array	name="labels_array">

								<item>Home</item>

								<item>Work</item>

								<item>Mobile</item>

								<item>Other</item>

</string-array>

Tip:	You	can	use	a	CursorAdapter	if	the	values	could	come	from	a	source	such	as	a	stored	file	or	a	database.	You	learn
more	about	stored	data	in	another	chapter.

Create	the	spinner	and	its	adapter

Create	the	spinner,	and	set	its	listener	to	the	activity	that	implements	the	callback	methods.	The	best	place	to	do	this	is
when	the	view	is	created	in	the		onCreate()		method.	Follow	these	steps	(refer	to	the	full		onCreate()		method	at	the	end	of
the	steps):

1.	 Add	the	code	below	to	the		onCreate()		method,	which	does	the	following:
2.	 Gets	the	spinner	object	you	added	to	the	layout	using		findViewById()		to	find	it	by	its		id		(label_spinner).

4.1:	User	Input	Controls

135

https://developer.android.com/reference/android/widget/SpinnerAdapter.html
https://developer.android.com/reference/android/widget/ArrayAdapter.html
https://developer.android.com/reference/android/widget/CursorAdapter.html

3.	 Sets	the	onItemSelectedListener	to	whichever	activity	implements	the	callbacks	(this)	using	the
setOnItemSelectedListener()	method.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			//	Create	the	spinner.

			Spinner	spinner	=	(Spinner)	findViewById(R.id.label_spinner);

			if	(spinner	!=	null)	{

						spinner.setOnItemSelectedListener(this);

			}

}

4.	 Also	in	the		onCreate()		method,	add	a	statement	that	creates	the	ArrayAdapter	with	the	string	array:

//	Create	ArrayAdapter	using	the	string	array	and	default	spinner	layout.

ArrayAdapter<CharSequence>	adapter	=	ArrayAdapter.createFromResource(this,

												R.array.labels_array,	android.R.layout.simple_spinner_item);

As	shown	above,	you	use	the	createFromResource()	method,	which	takes	as	arguments:

5.	 The	activity	that	implements	the	callbacks	for	processing	the	results	of	the	spinner	(this)
6.	 The	array	(labels_array)
7.	 The	layout	for	each	spinner	item	(layout.simple_spinner_item).

Tip:	You	should	use	the		simple_spinner_item		default	layout,	unless	you	want	to	define	your	own	layout	for	the	items	in
the	spinner.

8.	 Specify	the	layout	the	adapter	should	use	to	display	the	list	of	spinner	choices	by	calling	the
setDropDownViewResource()	method	of	the	ArrayAdapter	class.	For	example,	you	can	use
	simple_spinner_dropdown_item		as	your	layout:

//	Specify	the	layout	to	use	when	the	list	of	choices	appears.

adapter.setDropDownViewResource

																			(android.R.layout.simple_spinner_dropdown_item);

Tip:	You	should	use	the		simple_spinner_dropdown_item		default	layout,	unless	you	want	to	define	your	own	layout	for
the	spinner's	appearance.

9.	 Use	setAdapter()	to	apply	the	adapter	to	the	spinner:

//	Apply	the	adapter	to	the	spinner.

spinner.setAdapter(adapter);

The	full	code	for	the		onCreate()		method	is	shown	below:

4.1:	User	Input	Controls

136

https://developer.android.com/reference/android/widget/AdapterView.html#setOnItemSelectedListener(android.widget.AdapterView.OnItemSelectedListener)
https://developer.android.com/reference/android/widget/ArrayAdapter.html#createFromResource(android.content.Context,%20int,%20int)
https://developer.android.com/reference/android/widget/ArrayAdapter.html#setDropDownViewResource(int)
https://developer.android.com/reference/android/widget/AdapterView.html#setAdapter(T)

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			//	Create	the	spinner.

			Spinner	spinner	=	(Spinner)	findViewById(R.id.label_spinner);

			if	(spinner	!=	null)	{

												spinner.setOnItemSelectedListener(this);

			}

			//	Create	ArrayAdapter	using	the	string	array	and	default	spinner	layout.

			ArrayAdapter<CharSequence>	adapter	=	ArrayAdapter.createFromResource(this,

																R.array.labels_array,	android.R.layout.simple_spinner_item);

			//	Specify	the	layout	to	use	when	the	list	of	choices	appears.

			adapter.setDropDownViewResource

																(android.R.layout.simple_spinner_dropdown_item);

			//	Apply	the	adapter	to	the	spinner.

			if	(spinner	!=	null)	{

												spinner.setAdapter(adapter);

			}

}

Implement	the	OnItemSelectedListener	interface	in	the	Activity
To	define	the	selection	callback	for	the	spinner,	update	the	Activity	that	uses	the	spinner	to	implement	the
AdapterView.OnItemSelectedListener	interface:

public	class	MainActivity	extends	AppCompatActivity	implements

												AdapterView.OnItemSelectedListener	{

Android	Studio	automatically	imports	the	AdapterView	widget.	Implement	the		AdapterView.OnItemSelectedListener		interface
in	order	to	have	the		onItemSelected()		and		onNothingSelected()		callback	methods	to	use	with	the	spinner	object.

When	the	user	chooses	an	item	from	the	spinner's	drop-down	list,	here's	what	happens	and	how	you	retrieve	the	item:

1.	 The		Spinner		object	receives	an	on-item-selected	event.
2.	 The	event	triggers	the	calling	of	the	onItemSelected()	callback	method	of	the	AdapterView.OnItemSelectedListener

interface.
3.	 Retrieve	the	selected	item	in	the	spinner	menu	using	the	getItemAtPosition()	method	of	the	AdapterView	class:

public	void	onItemSelected(AdapterView<?>	adapterView,	View	view,	int

															pos,	long	id)	{

			String	spinner_item	=	adapterView.getItemAtPosition(pos).toString();

}

The	arguments	for		onItemSelected()		are	as	follows:

	parent	AdapterView	 The	AdapterView	where	the	selection	happened

	view	View	 The	view	within	the	AdapterView	that	was	clicked

	int	pos	 The	position	of	the	view	in	the	adapter

	long	id	 The	row	id	of	the	item	that	is	selected

4.	 Implement/override	the	onNothingSelected()	callback	method	of	the	AdapterView.OnItemSelectedListener	interface	to
do	something	if	nothing	is	selected.

4.1:	User	Input	Controls

137

https://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html
https://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html
https://developer.android.com/reference/android/widget/AdapterView.html#getItemAtPosition(int)
https://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html

For	more	information	about	spinners,	see	Spinners	in	the	"User	Interface"	section	of	the	Android	Developer	Documentation.

Text	input
Use	the	EditText	class	to	get	user	input	that	consists	of	textual	characters,	including	numbers	and	symbols.	EditText
extends	the	TextView	class,	to	make	the	TextView	editable.

Customizing	an	EditText	object	for	user	input

In	the	Layout	Manager	of	Android	Studio,	create	an	EditText	view	by	adding	an		EditText		to	your	layout	with	the	following
XML:

<EditText

				android:id="@+id/edit_simple"

				android:layout_height="wrap_content"

				android:layout_width="match_parent">

</EditText>

Enabling	multiple	lines	of	input

By	default,	the	EditText	view	allows	multiple	lines	of	input	as	shown	in	the	figure	below,	and	suggests	spelling	corrections.
Tapping	the	Return	(also	known	as	Enter)	key	on	the	on-screen	keyboard	ends	a	line	and	starts	a	new	line	in	the	same

EditText	view.	

Note:	In	the	above	figure,	#1	is	the	Return	(also	known	as	Enter)	key.

Enabling	Return	to	advance	to	the	next	view

If	you	add	the		android:inputType		attribute	to	the	EditText	view	with	a	value	such	as		"textCapCharacters"		(to	change	the
input	to	all	capital	letters)	or		"textAutoComplete"		(to	enable	spelling	suggestions	as	the	user	types),	tapping	the	Return	key
closes	the	on-screen	keyboard	and	advances	the	focus	to	the	next	view.	This	behavior	is	useful	if	you	want	the	user	to	fill
out	a	form	consisting	of	EditText	fields,	so	that	the	user	can	advance	quickly	to	the	next	EditText	view.

Attributes	for	customizing	an	EditText	view

4.1:	User	Input	Controls

138

http://developer.android.com/guide/topics/ui/controls/spinner.html
https://developer.android.com/reference/android/widget/EditText.html

Use	attributes	to	customize	the	EditText	view	for	input.	For	example:

	android:maxLines="1"	:	Set	the	text	entry	to	show	only	one	line.
	android:lines="2"	:	Set	the	text	entry	to	show	2	lines,	even	if	the	length	of	the	text	is	less.
	android:maxLength="5"	:	Set	the	maximum	number	of	input	characters	to	5.
	android:inputType="number"	:	Restrict	text	entry	to	numbers.
	android:digits="01"	:	Restrict	the	digits	entered	to	just	"0"	and	"1".
	android:textColorHighlight="#7cff88"	:	Set	the	background	color	of	selected	(highlighted)	text.
	android:hint="@string/my_hint"	:	Set	text	to	appear	in	the	field	that	provides	a	hint	for	the	user,	such	as	"Enter	a

message".	

For	a	list	of	EditText	attributes,	including	inherited	TextView	attributes,	see	the	"Summary"	of	the	EditText	class	description.

Getting	the	user's	input
Enabling	the	user	to	input	text	is	only	useful	if	you	can	use	that	text	in	some	way	in	your	app.	To	use	the	input,	you	must
first	get	it	from	the	EditText	view	in	the	XML	layout.	The	steps	you	follow	to	set	up	the	EditText	view	and	get	user	input	from
it	are:

1.	 Create	the	EditText	view	element	in	the	XML	layout	for	an	activity.	Be	sure	to	identify	this	element	with	an		android:id	
so	that	you	can	refer	to	it	by	its		id	:

android:id="@+id/editText_main"

2.	 In	the	Java	code	for	the	same	activity,	create	a	method	with	a		View		parameter	that	gets	the		EditText		object	(in	the
example	below,		editText)	for	the		EditText		view,	using	the	findViewById()	method	of	the	View	class	to	find	the	view
by	its	id	(editText_main):

EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

3.	 Use	the	getText()	method	of	the	EditText	class	(inherited	from	the	TextView	class)	to	obtain	the	text	as	a	character
sequence	(CharSequence).	You	can	convert	the	character	sequence	into	a	string	using	the	toString()	method	of	the
CharSequence	class,	which	returns	a	string	representing	the	data	in	the	character	sequence.

String	showString	=	editText.getText().toString();

Tip:	You	can	use	the	valueOf()	method	of	the	Integer	class	to	convert	the	string	to	an	integer	if	the	input	is	an	integer.

Changing	keyboards	and	input	behaviors

The	Android	system	shows	an	on-screen	keyboard—known	as	a	soft	input	method—when	a	text	field	in	the	UI	receives
focus.	To	provide	the	best	user	experience,	you	can	specify	characteristics	about	the	type	of	input	the	app	expects,	such	as
whether	it's	a	phone	number	or	email	address.	You	can	also	specify	how	the	input	method	should	behave,	such	as	whether
or	not	it	shows	spelling	suggestions	or	provides	capital	letters	for	the	beginning	of	a	sentence.	You	can	change	the	soft
input	method	to	a	numeric	keypad	for	entering	only	numbers,	or	even	a	phone	keypad	for	phone	numbers.

Android	also	provides	an	extensible	framework	for	advanced	programmers	to	develop	and	install	their	own	Input	Method
Editors	(IME)	for	speech	input,	specific	types	of	keyboard	entry,	and	other	applications.

Declare	the	input	method	by	adding	the	android:inputType	attribute	to	the	EditText	view.	For	example,	the	following	attribute
sets	the	on-screen	keyboard	to	be	a	phone	keypad:

android:inputType="phone"

Use	the	android:inputType	attribute	with	the	following	values:

4.1:	User	Input	Controls

139

https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/view/View.html#findViewById(int)
https://developer.android.com/reference/android/widget/TextView.html#getText()
https://developer.android.com/reference/java/lang/CharSequence.html#toString()
https://developer.android.com/reference/java/lang/Integer.html#valueOf(java.lang.String)
https://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType

	textCapSentences	:	Set	the	keyboard	to	capital	letters	at	the	beginning	of	a	sentence.
	textAutoCorrect	:	Enable	spelling	suggestions	as	the	user	types.
	textPassword	:	Turn	each	character	the	user	enters	into	a	dot	to	conceal	an	entered	password.
	textEmailAddress	:	For	email	entry,	show	an	email	keyboard	with	the	"@"	symbol	conveniently	located	next	to	the
space	key.
	phone	:	For	phone	number	entry,	show	a	numeric	phone	keypad.

Tip:	You	can	use	the	pipe		(|)	character	(Java	bitwise	OR)	to	combine	attribute	values	for	the		android:inputType	
attribute:

android:inputType="textAutoCorrect|textCapSentences"

For	details	about	the		android:inputType		attribute,	see	Specifying	the	Input	Method	Type	in	the	developer	documentation.
For	a	complete	list	of	constant	values	for	android:inputType,	see	the	"android:inputType"	section	of	the	TextView
documentation.

Changing	the	"action"	key	in	the	keyboard

On	Android	devices,	the	"action"	key	is	the	Return	key.	This	key	is	normally	used	to	enter	another	line	of	text	for	an
EditText	element	that	allows	multiple	lines.	If	you	set	an		android:inputType		attribute	for	the	EditText	view	with	a	value	such
as		"textCapCharacters"		(to	change	the	input	to	all	capital	letters)	or		"textAutoComplete"		(to	enable	spelling	suggestions	as
the	user	types),	the	Return	key	closes	the	on-screen	keyboard	and	advances	the	focus	to	the	next	view.

If	you	want	the	user	to	enter	something	other	than	text,	such	as	a	phone	number,	you	may	want	to	change	the	"action"	key
to	an	icon	for	a	Send	key,	and	change	the	action	to	be	dialing	a	phone	number.	Follow	these	steps:

1.	 Use	the		android:inputType		attribute	to	set	an	input	type	for	the	keyboard:

<EditText

			android:id="@+id/phone_number"

			android:inputType="phone"

			...	>

</EditText>

The		android:inputType		attribute,	in	the	above	example,	sets	the	keyboard	type	to		phone	,	which	forces	one	line	of
input	(for	a	phone	number).

2.	 Use		setOnEditorActionListener()		to	set	the	listener	for	the	EditText	view	to	respond	to	the	use	of	the	"action"	key:

EditText	editText	=	(EditText)	findViewById(R.id.phone_number);

editText.setOnEditorActionListener(new

																													TextView.OnEditorActionListener()	{

			//	Add	onEditorAction()	method

}

3.	 Use	the		IME_ACTION_SEND		constant	in	the	EditorInfo	class	for	the		actionId		to	show	a	Send	key	as	the	"action"	key,
and	create	a	method	to	respond	to	the	pressed	Send	key	(in	this	case,		dialNumber		to	dial	the	entered	phone	number):

@Override

public	boolean	onEditorAction(TextView	textView,

																																int	actionId,	KeyEvent	keyEvent)	{

			boolean	handled	=	false;

			if	(actionId	==	EditorInfo.IME_ACTION_SEND)	{

						dialNumber();

						handled	=	true;

			}

			return	handled;

});

Note:	For	help	setting	the	listener,	see	"Specifying	the	Input	ActionSpecifying	Keyboard	Actions"	in	Text	Fields.	For

4.1:	User	Input	Controls

140

http://developer.android.com/training/keyboard-input/style.html
https://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType
https://developer.android.com/training/keyboard-input/style.html#Action

more	information	about	the	EditorInfo	class,	see	the	EditorInfo	documentation.

Using	dialogs	and	pickers
A	dialog	is	a	window	that	appears	on	top	of	the	display	or	fills	the	display,	interrupting	the	flow	of	activity.	Dialogs	inform
users	about	a	specific	task	and	may	contain	critical	information,	require	decisions,	or	involve	multiple	tasks.

For	example,	you	would	typically	use	a	dialog	to	show	an	alert	that	requires	users	to	tap	a	button	make	a	decision,	such	as
OK	or	Cancel.	In	the	figure	below,	the	left	side	shows	an	alert	with	Disagree	and	Agree	buttons,	and	the	center	shows	an
alert	with	Cancel	and	Discard	buttons.

You	can	also	use	a	dialog	to	provide	choices	in	the	style	of	radio	buttons,	as	shown	on	the	right	side	of	the	figure	below.

The	base	class	for	all	dialog	components	is	a	Dialog.	There	are	several	useful	Dialog	subclasses	for	alerting	the	user	on	a
condition,	showing	status	or	progress,	displaying	information	on	a	secondary	device,	or	selecting	or	confirming	a	choice,	as
shown	on	the	left	side	of	the	figure	below.	The	Android	SDK	also	provides	ready-to-use	dialog	subclasses	such	as	pickers
for	picking	a	time	or	a	date,	as	shown	on	the	right	side	of	the	figure	below.	Pickers	allow	users	to	enter	information	in	a
predetermined,	consistent	format	that	reduces	the	chance	for	input	error.	

4.1:	User	Input	Controls

141

https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html
https://developer.android.com/reference/android/app/Dialog.html

Dialogs	always	retain	focus	until	dismissed	or	a	required	action	has	been	taken.

Tip:	Best	practices	recommend	using	dialogs	sparingly	as	they	interrupt	the	user's	work	flow.	Read	the	Dialogs	design
guide	for	additional	best	design	practices,	and	Dialogs	in	the	Android	developer	documentation	for	code	examples.

The	Dialog	class	is	the	base	class	for	dialogs,	but	you	should	avoid	instantiating	Dialog	directly	unless	you	are	creating	a
custom	dialog.	For	standard	Android	dialogs,	use	one	of	the	following	subclasses:

AlertDialog:	A	dialog	that	can	show	a	title,	up	to	three	buttons,	a	list	of	selectable	items,	or	a	custom	layout.
DatePickerDialog	or	TimePickerDialog:	A	dialog	with	a	pre-defined	UI	that	lets	the	user	select	a	date	or	time.

Showing	an	alert	dialog

Alerts	are	urgent	interruptions,	requiring	acknowledgement	or	action,	that	inform	the	user	about	a	situation	as	it	occurs,	or
an	action	before	it	occurs	(as	in	discarding	a	draft).	You	can	provide	buttons	in	an	alert	to	make	a	decision.	For	example,	an
alert	dialog	might	require	the	user	to	click	Continue	after	reading	it,	or	give	the	user	a	choice	to	agree	with	an	action	by
clicking	a	positive	button	(such	as	OK	or	Accept),	or	to	disagree	by	clicking	a	negative	button	(such	as	Disagree	or
Cancel).

Use	the	AlertDialog	subclass	of	the	Dialog	class	to	show	a	standard	dialog	for	an	alert.	The	AlertDialog	class	allows	you	to
build	a	variety	of	dialog	designs.	An	alert	dialog	can	have	the	following	regions	(refer	to	the	diagram	below):	

1.	 Title:	A	title	is	optional.	Most	alerts	don't	need	titles.	If	you	can	summarize	a	decision	in	a	sentence	or	two	by	either
asking	a	question	(such	as,	"Discard	draft?")	or	making	a	statement	related	to	the	action	buttons	(such	as,	"Click	OK	to
continue"),	don't	bother	with	a	title.	Use	a	title	if	the	situation	is	high-risk,	such	as	the	potential	loss	of	connectivity	or
data,	and	the	content	area	is	occupied	by	a	detailed	message,	a	list,	or	custom	layout.

2.	 Content	area:	The	content	area	can	display	a	message,	a	list,	or	other	custom	layout.
3.	 Action	buttons:	You	should	use	no	more	than	three	action	buttons	in	a	dialog,	and	most	have	only	two.

Building	the	AlertDialog

The	AlertDialog.Builder	class	uses	the	builder	design	pattern,	which	makes	it	easy	to	create	an	object	from	a	class	that	has
a	lot	of	required	and	optional	attributes	and	would	therefore	require	a	lot	of	parameters	to	build.	Without	this	pattern,	you
would	have	to	create	constructors	for	combinations	of	required	and	optional	attributes;	with	this	pattern,	the	code	is	easier
to	read	and	maintain.	For	more	information	about	the	builder	design	pattern,	see	Builder	pattern.

4.1:	User	Input	Controls

142

https://www.google.com/design/spec/components/dialogs.html
https://developer.android.com/guide/topics/ui/dialogs.html
https://developer.android.com/reference/android/app/Dialog.html
https://developer.android.com/reference/android/app/AlertDialog.html
https://developer.android.com/reference/android/app/DatePickerDialog.html
https://developer.android.com/reference/android/app/TimePickerDialog.html
https://developer.android.com/reference/android/app/AlertDialog.html
https://developer.android.com/reference/android/app/Dialog.html
https://developer.android.com/reference/android/app/AlertDialog.Builder.html
https://en.wikipedia.org/wiki/Builder_pattern

Use		AlertDialog.Builder		to	build	a	standard	alert	dialog	and	set	attributes	on	the	dialog.	Use	setTitle()	to	set	its	title,
setMessage()	to	set	its	message,	and	setPositiveButton()	and	setNegativeButton()	to	set	its	buttons.

Note:	If		AlertDialog.Builder		is	not	recognized	as	you	enter	it,	you	may	need	to	add	the	following	import	statements	to
MainActivity.java:

import	android.content.DialogInterface;

import	android.support.v7.app.AlertDialog;

The	following	creates	the	dialog	object	(myAlertBuilder)	and	sets	the	title	(the	string	resource	called		alert_title)	and
message	(the	string	resource	called		alert_message):

AlertDialog.Builder	myAlertBuilder	=	new

																		AlertDialog.Builder(MainActivity.this);

myAlertBuilder.setTitle(R.string.alert_title);

myAlertBuilder.setMessage(R.string.alert_message);

Setting	the	button	actions	for	the	alert	dialog
Use	the	setPositiveButton()	and	setNegativeButton()	methods	of	the	AlertDialog.Builder	class	to	set	the	button	actions	for
the	alert	dialog.	These	methods	require	a	title	for	the	button	(supplied	by	a	string	resource)	and	the
DialogInterface.OnClickListener	class	that	defines	the	action	to	take	when	the	user	presses	the	button:

myAlertBuilder.setPositiveButton("OK",	new	DialogInterface.OnClickListener()	{

						public	void	onClick(DialogInterface	dialog,	int	which)	{

											//	User	clicked	OK	button.

						}

});

myAlertBuilder.setNegativeButton("Cancel",	new	DialogInterface.OnClickListener()	{

						public	void	onClick(DialogInterface	dialog,	int	which)	{

									//	User	clicked	the	CANCEL	button.							

						}

			});

You	can	add	only	one	of	each	button	type	to	an	AlertDialog.	For	example,	you	can't	have	more	than	one	"positive"	button.

Tip:	You	can	also	set	a	"neutral"	button	with	setNeutralButton().	The	neutral	button	appears	between	the	positive	and
negative	buttons.	Use	a	neutral	button,	such	as	"Remind	me	later",	if	you	want	the	user	to	be	able	to	dismiss	the	dialog	and
decide	later.

Displaying	the	dialog
To	display	the	dialog,	call	its		show()		method:

alertDialog.show();

Date	and	time	pickers
Android	provides	ready-to-use	dialogs,	called	pickers,	for	picking	a	time	or	a	date.	Use	them	to	ensure	that	your	users	pick
a	valid	time	or	date	that	is	formatted	correctly	and	adjusted	to	the	user's	locale.	Each	picker	provides	controls	for	selecting
each	part	of	the	time	(hour,	minute,	AM/PM)	or	date	(month,	day,	year).	

4.1:	User	Input	Controls

143

https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setTitle(int)
https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setMessage(int)
https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setPositiveButton(int,%20android.content.DialogInterface.OnClickListener)
https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setNegativeButton(int,%20android.content.DialogInterface.OnClickListener)
https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setPositiveButton(int,%20android.content.DialogInterface.OnClickListener)
https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setNegativeButton(int,%20android.content.DialogInterface.OnClickListener)
https://developer.android.com/reference/android/content/DialogInterface.OnClickListener.html
https://developer.android.com/reference/android/app/AlertDialog.Builder.html#setNeutralButton(int,%20android.content.DialogInterface.OnClickListener)

When	showing	a	picker,	you	should	use	an	instance	of	DialogFragment,	a	subclass	of	Fragment,	which	displays	a	dialog
window	floating	on	top	of	its	activity's	window.	A	fragment	is	a	behavior	or	a	portion	of	user	interface	within	an	activity.	It's
like	a	mini-activity	within	the	main	activity,	with	its	own	individual	lifecycle.	A	fragment	receives	its	own	input	events,	and	you
can	add	or	remove	it	while	the	main	activity	is	running.	You	might	combine	multiple	fragments	in	a	single	activity	to	build	a
multiple-pane	user	interface,	or	reuse	a	fragment	in	multiple	activities.	To	learn	about	fragments,	see	Fragments	in	the	API
Guide.

One	benefit	of	using	fragments	for	the	pickers	is	that	you	can	isolate	the	code	sections	for	managing	the	date	and	the	time
after	the	user	selects	them	from	the	pickers.	You	can	also	use	DialogFragment	to	manage	the	dialog	lifecycle.

Tip:	Another	benefit	of	using	fragments	for	the	pickers	is	that	you	can	implement	different	layout	configurations,	such	as	a
basic	dialog	on	handset-sized	displays	or	an	embedded	part	of	a	layout	on	large	displays.

Adding	a	fragment

To	add	a	fragment	for	the	date	picker,	create	a	blank	fragment	(DatePickerFragment)	without	a	layout	XML,	and	without
factory	methods	or	interface	callbacks:

1.	 Expand	app	>	java	>	com.example.android.DateTimePickers	and	select	MainActivity.
2.	 Choose	File	>	New	>	Fragment	>	Fragment	(Blank),	and	name	the	fragment	DatePickerFragment.	Uncheck	all

three	checkbox	options	so	that	you	do	not	create	a	layout	XML,	do	not	include	fragment	factory	methods,	and	do	not
include	interface	callbacks.	You	don't	need	to	create	a	layout	for	a	standard	picker.	Click	Finish	to	create	the	fragment.

Extending	DialogFragment	for	the	picker
The	next	step	is	to	create	a	standard	picker	with	a	listener.	Follow	these	steps:

1.	 Edit	the		DatePickerFragment		class	definition	to	extend		DialogFragment,		and	implement
	DatePickerDialog.OnDateSetListener		to	create	a	standard	date	picker	with	a	listener:

public	class	DatePickerFragment	extends	DialogFragment

																					implements	DatePickerDialog.OnDateSetListener	{

...

}

Android	Studio	automatically	adds	the	following	in	the	import	block	at	the	top:

4.1:	User	Input	Controls

144

https://developer.android.com/reference/android/support/v4/app/DialogFragment.html
http://developer.android.com/guide/components/fragments.html

import	android.app.DatePickerDialog.OnDateSetListener;

import	android.support.v4.app.DialogFragment;

2.	 Android	Studio	also	shows	a	red	light	bulb	icon	in	the	left	margin,	prompting	you	to	implement	methods.	Click	the	icon
and,	with	onDateSet	already	selected	and	the	"Insert	@Override"	option	checked,	click	OK	to	create	the	empty
onDateSet()	method.

Android	Studio	then	automatically	adds	the	following	in	the	import	block	at	the	top:

import	android.widget.DatePicker;

3.	 Replace		onCreateView()		with		onCreateDialog()	:

@Override

public	Dialog	onCreateDialog(Bundle	savedInstanceState)	{

}

When	you	extend		DialogFragment	,	you	should	override	the	onCreateDialog()	callback	method,	rather	than
	onCreateView	.	You	use	your	version	of	the	callback	method	to	initialize	the		year	,		month	,	and		day		for	the	date
picker.

Setting	the	defaults	and	returning	the	picker

To	set	the	default	date	in	the	picker	and	return	it	as	an	object	you	can	use,	follow	these	steps:

1.	 Add	the	following	code	to	the		onCreateDialog()		method	to	set	the	default	date	for	the	picker:

//	Use	the	current	date	as	the	default	date	in	the	picker.

final	Calendar	c	=	Calendar.getInstance();

int	year	=	c.get(Calendar.YEAR);

int	month	=	c.get(Calendar.MONTH);

int	day	=	c.get(Calendar.DAY_OF_MONTH);

As	you	enter		Calendar	,	you	are	given	a	choice	of	which	Calendar	library	to	import.	Choose	this	one:

import	java.util.Calendar;

The	Calendar	class	sets	the	default	date	as	the	current	date—it	converts	between	a	specific	instant	in	time	and	a	set	of
calendar	fields	such	as		YEAR	,		MONTH	,		DAY_OF_MONTH	,		HOUR	,	and	so	on.	Calendar	is	locale-sensitive,	and	its	class
method		getInstance()		returns	a	Calendar	object	whose	calendar	fields	have	been	initialized	with	the	current	date	and
time.

2.	 Add	the	following	statement	to	the	end	of	the	method	to	create	a	new	instance	of	the	date	picker	and	return	it:

return	new	DatePickerDialog(getActivity(),	this,	year,	month,	day);

Showing	the	picker
In	the	Main	Activity,	you	need	to	create	a	method	to	show	the	date	picker.	Follow	these	steps:

1.	 Create	a	method	to	instantiate	the	date	picker	dialog	fragment:

public	void	showDatePickerDialog(View	v)	{

				DialogFragment	newFragment	=	new	DatePickerFragment();

				newFragment.show(getSupportFragmentManager(),	"datePicker");

}

2.	 You	can	then	use		showDatePickerDialog()		with	the		android:onClick		attribute	for	a	button	or	other	input	control:

4.1:	User	Input	Controls

145

https://developer.android.com/reference/android/app/DatePickerDialog.OnDateSetListener.html#onDateSet(android.widget.DatePicker,%20int,%20int,%20int)
https://developer.android.com/reference/android/support/v4/app/DialogFragment.html#onCreateDialog(android.os.Bundle)
https://developer.android.com/reference/java/util/Calendar.html

<Button

								android:id="@+id/button_date"

								...

								android:onClick="showDatePickerDialog"/>

Processing	the	user's	picker	choice
The		onDateSet()		method	is	automatically	called	when	the	user	makes	a	selection	in	the	date	picker,	so	you	can	use	this
method	to	do	something	with	the	chosen	date.	Follow	these	steps:

1.	 To	make	the	code	more	readable,	change	the		onDateSet()		method's	parameters	from		int	i	,		int	i1	,	and		int	i2	
to		int	year	,		int	month	,	and		int	day	:

public	void	onDateSet(DatePicker	view,	int	year,	int	month,	int	day)	{

2.	 Open	MainActivity	and	add	the		processDatePickerResult()		method	signature	that	takes	the		year	,		month	,	and		day	
as	arguments:

public	void	processDatePickerResult(int	year,	int	month,	int	day)	{

}

3.	 Add	the	following	code	to	the		processDatePickerResult()		method	to	convert	the		month	,		day	,	and		year		to	separate
strings:

String	month_string	=	Integer.toString(month+1);

String	day_string	=	Integer.toString(day);

String	year_string	=	Integer.toString(year);

Note:	The		month		integer	returned	by	the	date	picker	starts	counting	at	0	for	January,	so	you	need	to	add	1	to	it	to	start
show	months	starting	at	1.

4.	 Add	the	following	after	the	above	code	to	concatenate	the	three	strings	and	include	slash	marks	for	the	U.S.	date
format:

String	dateMessage	=	(month_string	+	"/"	+

																												day_string	+	"/"	+	year_string);

5.	 Add	the	following	after	the	above	statement	to	display	a	Toast	message:

Toast.makeText(this,	"Date:	"	+	dateMessage,

																												Toast.LENGTH_SHORT).show();

6.	 Extract	the	hard-coded	string		"Date:	"		into	a	string	resource	named		date	.	This	automatically	replaces	the	hard-
coded	string	with		getString(R.string.date)	.	The	code	for	the		processDatePickerResult()		method	should	now	look	like
this:

public	void	processDatePickerResult(int	year,	int	month,	int	day)	{

			String	month_string	=	Integer.toString(month	+	1);

			String	day_string	=	Integer.toString(day);

			String	year_string	=	Integer.toString(year);

			//	Assign	the	concatenated	strings	to	dateMessage.

			String	dateMessage	=	(month_string	+	"/"	+

																																	day_string	+	"/"	+	year_string);

			Toast.makeText(this,	getString(R.string.date)	+	dateMessage,

																																	Toast.LENGTH_SHORT).show();

}

7.	 Open	DatePickerFragment,	and	add	the	following	to	the		onDateSet()		method	to	invoke	the
	processDatePickerResult()		method	in		MainActivity		and	pass	it	the		year	,		month	,	and		day	:

4.1:	User	Input	Controls

146

public	void	onDateSet(DatePicker	view,	int	year,	int	month,	int	day)	{

			//	Set	the	activity	to	the	Main	Activity.

			MainActivity	activity	=	(MainActivity)	getActivity();

			//	Invoke	Main	Activity's	processDatePickerResult()	method.

			activity.processDatePickerResult(year,	month,	day);

}

You	use		getActivity()		which,	when	used	in	a	fragment,	returns	the	activity	the	fragment	is	currently	associated	with.
You	need	this	because	you	can't	call	a	method	in		MainActivity		without	the	context	of		MainActivity		(you	would	have
to	use	an		intent		instead,	as	you	learned	in	a	previous	lesson).	The	activity	inherits	the	context,	so	you	can	use	it	as
the	context	for	calling	the	method	(as	in		activity.processDatePickerResult)	.	

Using	the	same	procedures	for	the	time	picker

Follow	the	same	procedures	outlined	above	for	a	date	picker:

1.	 Add	a	blank	fragment	called	TimePickerFragment	that	extends		DialogFragment		and	implements
	TimePickerDialog.OnTimeSetListener	:

public	class	TimePickerFragment	extends	DialogFragment

																	implements	TimePickerDialog.OnTimeSetListener	{

2.	 Add	with		@Override		a	blank		onTimeSet()		method:

Android	Studio	also	shows	a	red	light	bulb	icon	in	the	left	margin,	prompting	you	to	implement	methods.	Click	the	icon
and,	with	onTimeSet	already	selected	and	the	"Insert	@Override"	option	checked,	click	OK	to	create	the	empty
onTimeSet()	method.	Android	Studio	then	automatically	adds	the	following	in	the	import	block	at	the	top:

import	android.widget.TimePicker;

3.	 Use		onCreateDialog()		to	initialize	the	time	and	return	the	dialog:

public	Dialog	onCreateDialog(Bundle	savedInstanceState)	{

								//	Use	the	current	time	as	the	default	values	for	the	picker.

								final	Calendar	c	=	Calendar.getInstance();

								int	hour	=	c.get(Calendar.HOUR_OF_DAY);

								int	minute	=	c.get(Calendar.MINUTE);

								//	Create	a	new	instance	of	TimePickerDialog	and	return	it.

								return	new	TimePickerDialog(getActivity(),	this,	hour,	minute,

																DateFormat.is24HourFormat(getActivity()));

				}

4.	 Show	the	picker:	Open	MainActivity	and	create	a	method	to	instantiate	the	date	picker	dialog	fragment:

public	void	showDatePickerDialog(View	v)	{

								DialogFragment	newFragment	=	new	DatePickerFragment();

								newFragment.show(getSupportFragmentManager(),	"datePicker");

}

Use		showDatePickerDialog()		with	the		android:onClick		attribute	for	a	button	or	other	input	control:

<Button

								android:id="@+id/button_date"

								...

								android:onClick="showDatePickerDialog"/>

5.	 Create	the		processTimePickerResult()		method	in	MainActivity	to	process	the	result	of	choosing	from	the	time	picker:

4.1:	User	Input	Controls

147

https://developer.android.com/reference/android/app/TimePickerDialog.OnTimeSetListener.html#onTimeSet(android.widget.TimePicker,%20int,%20int)

public	void	processTimePickerResult(int	hourOfDay,	int	minute)	{

			//	Convert	time	elements	into	strings.

			String	hour_string	=	Integer.toString(hourOfDay);

			String	minute_string	=	Integer.toString(minute);

			//	Assign	the	concatenated	strings	to	timeMessage.

			String	timeMessage	=	(hour_string	+	":"	+	minute_string);

			Toast.makeText(this,	getString(R.string.time)	+	timeMessage,

																																				Toast.LENGTH_SHORT).show();

}

6.	 Use		onTimeSet()		to	get	the	time	and	pass	it	to	the		processTimePickerResult()		method	in	MainActivity:

public	void	onTimeSet(TimePicker	view,	int	hourOfDay,	int	minute)	{

			//	Set	the	activity	to	the	Main	Activity.

			MainActivity	activity	=	(MainActivity)	getActivity();

			//	Invoke	Main	Activity's	processTimePickerResult()	method.

			activity.processTimePickerResult(hourOfDay,	minute);

}

You	can	read	all	about	setting	up	pickers	in	Pickers.

Recognizing	gestures
A	touch	gesture	occurs	when	a	user	places	one	or	more	fingers	on	the	touch	screen,	and	your	app	interprets	that	pattern	of
touches	as	a	particular	gesture,	such	as	a	long	touch,	double-tap,	fling,	or	scroll.

Android	provides	a	variety	of	classes	and	methods	to	help	you	create	and	detect	gestures.	Although	your	app	should	not
depend	on	touch	gestures	for	basic	behaviors	(since	the	gestures	may	not	be	available	to	all	users	in	all	contexts),	adding
touch-based	interaction	to	your	app	can	greatly	increase	its	usefulness	and	appeal.

To	provide	users	with	a	consistent,	intuitive	experience,	your	app	should	follow	the	accepted	Android	conventions	for	touch
gestures.	The	Gestures	design	guide	shows	you	how	to	design	common	gestures	in	Android	apps.	For	more	code	samples
and	details,	see	Using	Touch	Gestures	in	the	Android	developer	documentation.

Detecting	common	gestures

If	your	app	uses	common	gestures	such	as	double	tap,	long	press,	fling,	and	so	on,	you	can	take	advantage	of	the
GestureDetector	class	for	detecting	common	gestures.	Use	GestureDetectorCompat,	which	is	provided	as	a	compatibility
implementation	of	the	framework's	GestureDetector	class	which	guarantees	the	newer	focal	point	scrolling	behavior	from
Jellybean	MR1	on	all	platform	versions.	This	class	should	be	used	only	with	motion	events	reported	for	touch	devices—
don't	use	it	for	trackball	or	other	hardware	events.

GestureDetectorCompat	lets	you	detect	common	gestures	without	processing	the	individual	touch	events	yourself.	It
detects	various	gestures	and	events	using	MotionEvent	objects,	which	report	movements	by	a	finger	(or	mouse,	pen,	or
trackball).

The	following	snippets	show	how	you	would	use		GestureDetectorCompat		and	the		GestureDetector.SimpleOnGestureListener	
class.

1.	 To	use	GestureDetectorCompat,	create	an	instance	(mDetector		in	the	snippet	below)	of	the		GestureDetectorCompat	
class,	using	the		onCreate()		method	in	the	activity	(such	as	MainActivity):

4.1:	User	Input	Controls

148

http://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/design/patterns/gestures.html
https://developer.android.com/training/gestures/index.html
https://developer.android.com/reference/android/view/GestureDetector.html
https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat.html

public	class	MainActivity	extends	Activity	{

				private	GestureDetectorCompat	mDetector;

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_main);

								mDetector	=	new	GestureDetectorCompat(this,	new

												MyGestureListener());

				}

				...

}

When	you	instantiate	a		GestureDetectorCompat		object,	one	of	the	parameters	it	takes	is	a	class	you	must	create
—	MyGestureListener		in	the	above	snippet—that	does	one	of	the	following:

implements	the	GestureDetector.OnGestureListener	interface,	to	detect	all	standard	gestures,	or
extends	the	GestureDetector.SimpleOnGestureListener	class,	which	you	can	use	to	process	only	a	few	gestures	by
overriding	the	methods	you	need.	Some	of	the	methods	it	provides	include	onDown(),	onLongPress(),	onFling(),
onScroll(),	and	onSingleTapUp().

1.	 Create	the	class		MyGestureListener		as	a	separate	activity	(MyGestureListener)		to	extend
	GestureDetector.SimpleOnGestureListener	,	and	override	the	onFling()	and	onDown()	methods	to	show	log	statements
about	the	event:

class	MyGestureListener

																			extends	GestureDetector.SimpleOnGestureListener	{

			private	static	final	String	DEBUG_TAG	=	"Gestures";

			@Override

			public	boolean	onDown(MotionEvent	event)	{

						Log.d(DEBUG_TAG,"onDown:	"	+	event.toString());

						return	true;

			}

			@Override

			public	boolean	onFling(MotionEvent	event1,	MotionEvent	event2,

																		float	velocityX,	float	velocityY)	{

							Log.d(DEBUG_TAG,	"onFling:	"	+

												event1.toString()+event2.toString());

							return	true;

			}

}

2.	 To	intercept	touch	events,	override	the	onTouchEvent()	callback	of	the	GestureDetectorCompat	class	in	MainActivity:

@Override

public	boolean	onTouchEvent(MotionEvent	event){

		this.mDetector.onTouchEvent(event);

		return	super.onTouchEvent(event);

}

Detecting	all	gestures

To	detect	all	types	of	gestures,	you	need	to	perform	two	essential	steps:

1.	 Gather	data	about	touch	events.
2.	 Interpret	the	data	to	see	if	it	meets	the	criteria	for	any	of	the	gestures	your	app	supports.

The	gesture	starts	when	the	user	first	touches	the	screen,	continues	as	the	system	tracks	the	position	of	the	user's
finger(s),	and	ends	by	capturing	the	final	event	of	the	user's	fingers	leaving	the	screen.	Throughout	this	interaction,	an
object	of	the	MotionEvent	class	is	delivered	to	onTouchEvent(),	providing	the	details	of	every	interaction.	Your	app	can	use
the	data	provided	by	the	MotionEvent	to	determine	if	a	gesture	it	cares	about	happened.

4.1:	User	Input	Controls

149

https://developer.android.com/reference/android/view/GestureDetector.OnGestureListener.html
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onDown(android.view.MotionEvent)
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onLongPress(android.view.MotionEvent)
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onFling(android.view.MotionEvent,%20android.view.MotionEvent,%20float,%20float)
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onScroll(android.view.MotionEvent,%20android.view.MotionEvent,%20float,%20float)
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onSingleTapUp(android.view.MotionEvent)
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onFling(android.view.MotionEvent,%20android.view.MotionEvent,%20float,%20float)
https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html#onDown(android.view.MotionEvent)
https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat.html#onTouchEvent(android.view.MotionEvent)
https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat.html#onTouchEvent(android.view.MotionEvent)

For	example,	when	the	user	first	touches	the	screen,	the	onTouchEvent()	method	is	triggered	on	the	view	that	was	touched,
and	a	MotionEvent	object	reports	movement	by	a	finger	(or	mouse,	pen,	or	trackball)	in	terms	of:

An	action	code:	Specifies	the	state	change	that	occurred,	such	as	a	finger	tapping	down	or	lifting	up.
A	set	of	axis	values:	Describes	the	position	in	X	and	Y	coordinates	of	the	touch	and	information	about	the	pressure,
size	and	orientation	of	the	contact	area.

The	individual	fingers	or	other	objects	that	generate	movement	traces	are	referred	to	as	pointers.	Some	devices	can	report
multiple	movement	traces	at	the	same	time.	Multi-touch	screens	show	one	movement	trace	for	each	finger.	Motion	events
contain	information	about	all	of	the	pointers	that	are	currently	active	even	if	some	of	them	have	not	moved	since	the	last
event	was	delivered.	Based	on	the	interpretation	of	the	MotionEvent	object,	the	onTouchEvent()	method	triggers	the
appropriate	callback	on	the	GestureDetector.OnGestureListener	interface.

Each	MotionEvent	pointer	has	a	unique	id	that	is	assigned	when	it	first	goes	down	(indicated	by		ACTION_DOWN		or
	ACTION_POINTER_DOWN)	.	A	pointer	id	remains	valid	until	the	pointer	eventually	goes	up	(indicated	by		ACTION_UP		or
	ACTION_POINTER_UP)	or	when	the	gesture	is	canceled	(indicated	by		ACTION_CANCEL).	The	MotionEvent	class	provides
methods	to	query	the	position	and	other	properties	of	pointers,	such	as	getX(int),	getY(int),	getAxisValue(int),
getPointerId(int),	and	getToolType(int).

The	interpretation	of	the	contents	of	a	MotionEvent	varies	significantly	depending	on	the	source	class	of	the	device.	On
touch	screens,	the	pointer	coordinates	specify	absolute	positions	such	as	view	X/Y	coordinates.	Each	complete	gesture	is
represented	by	a	sequence	of	motion	events	with	actions	that	describe	pointer	state	transitions	and	movements.

A	gesture	starts	with	a	motion	event	with		ACTION_DOWN		that	provides	the	location	of	the	first	pointer	down.	As	each
additional	pointer	goes	down	or	up,	the	framework	generates	a	motion	event	with		ACTION_POINTER_DOWN		or
	ACTION_POINTER_UP		accordingly.	Pointer	movements	are	described	by	motion	events	with		ACTION_MOVE	.	A	gesture	ends
when	the	final	pointer	goes	up	as	represented	by	a	motion	event	with		ACTION_UP	,	or	when	the	gesture	is	canceled	with
	ACTION_CANCEL	.

To	intercept	touch	events	in	an	activity	or	view,	override	the		onTouchEvent()		callback	as	shown	in	the	snippet	below.	You
can	use	the	getActionMasked()	method	of	the	MotionEventCompat	class	to	extract	the	action	the	user	performed	from	the
event	parameter.	(MotionEventCompat	is	a	helper	for	accessing	features	in	a	MotionEvent,	which	was	introduced	after	API
level	4	in	a	backwards	compatible	fashion.)	This	gives	you	the	raw	data	you	need	to	determine	if	a	gesture	you	care	about
occurred:

4.1:	User	Input	Controls

150

https://developer.android.com/reference/android/view/GestureDetector.html#onTouchEvent(android.view.MotionEvent)
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/GestureDetector.html#onTouchEvent(android.view.MotionEvent)
https://developer.android.com/reference/android/view/GestureDetector.OnGestureListener.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/MotionEvent.html#getX(int)
https://developer.android.com/reference/android/view/MotionEvent.html#getY(int)
https://developer.android.com/reference/android/view/MotionEvent.html#getAxisValue(int)
https://developer.android.com/reference/android/view/MotionEvent.html#getPointerId(int)
https://developer.android.com/reference/android/view/MotionEvent.html#getToolType(int)
https://developer.android.com/reference/android/support/v4/view/MotionEventCompat.html#getActionMasked(android.view.MotionEvent)
https://developer.android.com/reference/android/support/v4/view/MotionEventCompat.html#getActionMasked(android.view.MotionEvent)

public	class	MainActivity	extends	Activity	{

...

//	This	example	shows	an	Activity,	but	you	would	use	the	same	approach	if

//	you	were	subclassing	a	View.

			@Override

			public	boolean	onTouchEvent(MotionEvent	event){

							int	action	=	MotionEventCompat.getActionMasked(event);

							switch(action)	{

										case	(MotionEvent.ACTION_DOWN)	:

													Log.d(DEBUG_TAG,"Action	was	DOWN");

													return	true;

										case	(MotionEvent.ACTION_MOVE)	:

													Log.d(DEBUG_TAG,"Action	was	MOVE");

													return	true;

										case	(MotionEvent.ACTION_UP)	:

													Log.d(DEBUG_TAG,"Action	was	UP");

													return	true;

										case	(MotionEvent.ACTION_CANCEL)	:

													Log.d(DEBUG_TAG,"Action	was	CANCEL");

													return	true;

										case	(MotionEvent.ACTION_OUTSIDE)	:

													Log.d(DEBUG_TAG,"Movement	occurred	outside	bounds	"	+

																				"of	current	screen	element");

													return	true;						

										default	:

													return	super.onTouchEvent(event);

				}						

}

You	can	then	do	your	own	processing	on	these	events	to	determine	if	a	gesture	occurred.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Using	Keyboards,	Input	Controls,	Alerts,	and	Pickers

Learn	more
Android	API	Guide,	"Develop"	section:

Specifying	the	Input	Method	Type
Handling	Keyboard	Input
Text	Fields
EditorInfo
Input	Controls
Buttons
Styles	and	Themes
Spinners
Dialogs
Fragments
Input	Events
Pickers
DateFormat
Using	Touch	Gestures

Material	Design	Spec:
Components	-	Buttons
Dialogs	design	guide

4.1:	User	Input	Controls

151

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/41_p_use_keyboards,_input_controls,_alerts,_and_pi.html
http://developer.android.com/training/keyboard-input/style.html
https://developer.android.com/training/keyboard-input/style.html#Action
http://developer.android.com/guide/topics/ui/controls/text.html
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html
http://developer.android.com/guide/topics/ui/controls.html
https://developer.android.com/guide/topics/ui/controls/button.html
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/guide/topics/ui/controls/spinner.html
https://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/reference/java/text/DateFormat.html
https://developer.android.com/training/gestures/index.html
https://material.google.com/components/buttons.html
https://www.google.com/design/spec/components/dialogs.html

Gestures	design	guide
Developer	Blog:

"Holo	Everywhere"
Implementing	Material	Design	in	Your	Android	app

4.1:	User	Input	Controls

152

http://developer.android.com/design/patterns/gestures.html
http://android-developers.blogspot.com/2012/01/holo-everywhere.html
http://android-developers.blogspot.com/2014/10/implementing-material-design-in-your.html

4.2:	Menus
Contents:

Types	of	menus
The	app	bar	and	options	menu
Contextual	menu
Popup	menu
Related	practical
Learn	more

Types	of	menus
A	menu	is	a	set	of	options	the	user	can	select	from	to	perform	a	function,	such	as	searching	for	information,	saving
information,	editing	information,	or	navigating	to	a	screen.	Android	offers	the	following	types	of	menus,	which	are	useful	for
different	situations	(refer	to	the	figure	below):	

1.	 Options	menu:	Appears	in	the	app	bar	and	provides	the	primary	options	that	affect	using	the	app	itself.	Examples	of
menu	options:	Search	to	perform	a	search,	Bookmark	to	save	a	link	to	a	screen,	and	Settings	to	navigate	to	the
Settings	screen.

2.	 Context	menu:	Appears	as	a	floating	list	of	choices	when	the	user	performs	a	long	tap	on	an	element	on	the	screen.
Examples	of	menu	options:	Edit	to	edit	the	element,	Delete	to	delete	it,	and	Share	to	share	it	over	social	media.

3.	 Contextual	action	bar:	Appears	at	the	top	of	the	screen	overlaying	the	app	bar,	with	action	items	that	affect	the	selected
element(s).	Examples	of	menu	options:	Edit,	Share,	and	Delete	for	one	or	more	selected	elements.

4.	 Popup	menu:	Appears	anchored	to	a	view	such	as	an	ImageButton,	and	provides	an	overflow	of	actions	or	the	second
part	of	a	two-part	command.	Example	of	a	popup	menu:	the	Gmail	app	anchors	a	popup	menu	to	the	app	bar	for	the
message	view	with	Reply,	Reply	All,	and	Forward.

The	app	bar	and	options	menu
The	app	bar	(also	called	the	action	bar)	is	a	dedicated	space	at	the	top	of	each	activity	screen.	When	you	create	an	activity
from	a	template	(such	as	Empty	Template),	an	app	bar	is	automatically	included	for	the	activity	in	a	CoordinatorLayout	root
view	group	at	the	top	of	the	view	hierarchy.

4.2:	Menus

153

The	app	bar	by	default	shows	the	app	title,	or	the	name	defined	in	AndroidManifest.xml	by	the		android:label		attribute	for
the	activity.	It	may	also	include	the	Up	button	for	navigating	up	to	the	parent	activity,	which	is	described	in	the	next	chapter.

The	options	menu	in	the	app	bar	provides	navigation	to	other	activities	in	the	app,	or	the	primary	options	that	affect	using
the	app	itself	—	but	not	ones	that	perform	an	action	on	an	element	on	the	screen.	For	example,	your	options	menu	might
provide	the	user	choices	for	navigating	to	other	activities,	such	as	placing	an	order,	or	for	actions	that	have	a	global	impact
on	the	app,	such	as	changing	settings	or	profile	information.

The	options	menu	appears	in	the	right	corner	of	the	app	bar.	The	app	bar	is	split	into	four	different	functional	areas	that

apply	to	most	apps:	

1.	 Navigation	button	or	Up	button:	Use	a	navigation	button	in	this	space	to	open	a	navigation	drawer,	or	use	an	Up	button
for	navigating	up	through	your	app's	screen	hierarchy	to	the	parent	activity.	Both	are	described	in	the	next	chapter.

2.	 Title:	The	title	in	the	app	bar	is	the	app	title,	or	the	name	defined	in	AndroidManifest.xml	by	the		android:label		attribute
for	the	activity.

3.	 Action	icons	for	the	options	menu:	Each	action	icon	appears	in	the	app	bar	and	represents	one	of	the	options	menu's
most	frequently	used	items.	Less	frequently	used	options	menu	items	appear	in	the	overflow	options	menu.

4.	 Overflow	options	menu:	The	overflow	icon	opens	a	popup	with	option	menu	items	that	are	not	shown	as	icons	in	the
app	bar.

4.2:	Menus

154

Frequently-used	options	menu	items	should	appear	as	icons	in	the	app	bar.	The	overflow	options	menu	shows	the	rest	of
the	menu:	

In	the	above	figure:

1.	 App	bar.	The	app	bar	includes	the	app	title,	the	options	menu,	and	the	overflow	button.
2.	 Options	menu	action	icons.	The	first	two	options	menu	items	appear	as	icons	in	the	app	bar.
3.	 Overflow	button.	The	overflow	button	(three	vertical	dots)	opens	a	menu	that	shows	more	options	menu	items.
4.	 Options	overflow	menu.	After	clicking	the	overflow	button,	more	options	menu	items	appear	in	the	overflow	menu.

Adding	the	app	bar
Each	activity	that	uses	the	default	theme	also	has	an	ActionBar	as	its	app	bar.	Some	themes	also	set	up	an	ActionBar	as
an	app	bar	by	default.	When	you	start	an	app	from	a	template	such	as	Empty	Activity,	an	ActionBar	appears	as	the	app	bar.

However,	as	features	were	added	to	the	native	ActionBar	over	various	Android	releases,	the	native	ActionBar	behaves
differently	depending	on	the	version	of	Android	running	on	the	device.	For	this	reason,	if	you	are	adding	an	options	menu,
you	should	use	the	v7	appcompat	support	library's	Toolbar	as	an	app	bar.	Using	the	Toolbar	makes	it	easy	to	set	up	an	app
bar	that	works	on	the	widest	range	of	devices,	and	also	gives	you	room	to	customize	your	app	bar	later	on	as	your	app
develops.	Toolbar	includes	the	most	recent	features,	and	works	for	any	device	that	can	use	the	support	library.

In	order	to	use	Toolbar	as	the	app	bar	(rather	than	the	default	ActionBar)	for	an	activity,	do	one	of	the	following:

Start	your	project	with	the	Basic	Activity	template,	which	implements	the	Toolbar	for	the	activity	as	well	as	a
rudimentary	options	menu	(with	one	item,	Settings).	You	can	skip	this	section.
Do	it	yourself,	as	shown	in	this	section:
1.	 Add	the	support	libraries:	appcompat	and	design.
2.	 Use	a	NoActionBar	theme	and	styles	for	the	app	bar	and	background.
3.	 Add	an	AppBarLayout	and	a	Toolbar	to	the	layout.
4.	 Add	code	to	the	activity	to	set	up	the	app	bar.

4.2:	Menus

155

https://developer.android.com/reference/android/app/ActionBar.html
https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html

Adding	the	support	libraries

If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the	following	support	libraries	for	you,	so	you
can	skip	this	step.

If	you	are	not	using	the	Basic	Activity	template,	add	the	appcompat	support	library	(current	version	is	v7)	for	the	Toolbar
class,	and	the	design	library	for	the	NoActionBar	themes,	to	your	project:

1.	 Choose	Tools	>	Android	>	SDK	Manager	to	check	that	the	Android	Support	Repository	is	installed;	if	it	is	not,	install
it.

2.	 Open	the	build.gradle	file	for	your	app,	and	add	the	support	library	feature	project	identifiers	to	the		dependencies	
section.	For	example,	to	include		support:appcompat		and		support:design	,	add:

compile	'com.android.support:appcompat-v7:23.4.0'

compile	'com.android.support:design:23.4.0'

Note:	Update	the	version	numbers	for	dependencies	if	necessary.	If	the	version	number	you	specified	is	lower	than	the
currently	available	library	version	number,	Android	Studio	will	warn	you	("a	newer	version	of
com.android.support:design	is	available").	Update	the	version	number	to	the	one	Android	Studio	tells	you	to	use.

Using	themes	to	design	the	app	bar

If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the	theme	to	replace	the	ActionBar	with	a
	Toolbar	,	so	you	can	skip	this	step.

If	you	are	not	using	the	Basic	Activity	template,	you	can	use	the		Toolbar		class	for	the	app	bar	by	turning	off	the	default
ActionBar	using	a	NoActionBar	theme	for	the	activity.	Themes	in	Android	are	similar	to	styles,	except	that	they	are	applied
to	an	entire	app	or	activity	rather	than	to	a	specific	view.

When	you	create	a	new	project	in	Android	Studio,	an	app	theme	is	automatically	generated	for	you.	For	example,	if	you
start	an	app	project	with	the	Empty	Activity	or	Basic	Activity	template,	the		AppTheme		theme	is	provided	in	styles.xml	in	the
res	>	values	directory.

Tip:	You	learn	more	about	themes	in	the	chapter	on	drawables,	styles	and	themes.

You	can	modify	the	theme	to	provide	a	style	for	the	app	bar	and	app	background	so	that	the	app	bar	is	visible	and	stands
out	against	the	background.	Follow	these	steps:

1.	 Open	the	styles.xml	file.	You	should	already	have	the	following	in	the	file:

<resources>

			<!--	Base	application	theme.	-->

			<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

						<!--	Customize	your	theme	here.	-->

						<item	name="colorPrimary">@color/colorPrimary</item>

						<item	name="colorPrimaryDark">@color/colorPrimaryDark</item>

						<item	name="colorAccent">@color/colorAccent</item>

			</style>

			...

</resources>

	AppTheme		"inherits"—takes	on	all	the	styles—from	a	parent	them	called		Theme.AppCompat.Light.DarkActionBar	,	which
is	a	standard	theme	supplied	with	Android.	However,	you	can	override	an	inherited	style	with	another	style	by	adding
the	other	style	to	styles.xml.

2.	 Add	the		AppTheme.NoActionBar	,		AppTheme.AppBarOverlay	,	and		AppTheme.PopupOverlay		styles	under	the		AppTheme		style,
as	shown	below.	These	styles	will	override	the	style	attributes	with	the	same	names	in		AppTheme	,	affecting	the
appearance	of	the	app	bar	and	the	app's	background:

4.2:	Menus

156

https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat

<resources>

			<!--	Base	application	theme.	-->

			<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

						...

			</style>

			<style	name="AppTheme.NoActionBar">

						<item	name="windowActionBar">false</item>

						<item	name="windowNoTitle">true</item>

			</style>

			<style	name="AppTheme.AppBarOverlay"

												parent="ThemeOverlay.AppCompat.Dark.ActionBar"	/>

			<style	name="AppTheme.PopupOverlay"

												parent="ThemeOverlay.AppCompat.Light"	/>

			...

</resources>

3.	 In	the	AndroidManifest.xml	file,	add	the	NoActionBar	theme	in	appcompat	to	the		<application>		element.	Using	this
theme	prevents	the	app	from	using	the	native	ActionBar	class	to	provide	the	app	bar:

<activity

			...

			android:theme="@style/AppTheme.NoActionBar">

</activity>

Adding	AppBarLayout	and	a	Toolbar	to	the	layout
If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the		AppBarLayout		and		Toolbar		for	you,	so
you	can	skip	this	step.

If	you	are	not	using	the	Basic	Activity	template,	you	can	include	the	Toolbar	in	an	activity's	layout	by	adding	an
	AppBarLayout		and	a		Toolbar		element.	AppBarLayout	is	a	vertical	LinearLayout	which	implements	many	of	the	features	of
the	material	designs	app	bar	concept,	such	as	scrolling	gestures.	Keep	in	mind	the	following:

	AppBarLayout		must	be	a	direct	child	within	a		CoordinatorLayout		root	view	group,	and		Toolbar		must	be	a	direct	child
within		AppBarLayout	,	as	shown	below:

<android.support.design.widget.CoordinatorLayout

			...	>

			<android.support.design.widget.AppBarLayout

						...>

						<android.support.v7.widget.Toolbar

												...

												/>

			</android.support.design.widget.AppBarLayout>

			...

</android.support.design.widget.CoordinatorLayout>

Position	the		Toolbar		at	the	top	of	the	activity's	layout,	since	you	are	using	it	as	an	app	bar.
	AppBarLayout		also	requires	a	separate	content	layout	sibling	for	the	content	that	scrolls	underneath	the	app	bar.	You
can	add	this	sibling	as	a	view	group	(such	as	RelativeLayout	or	LinearLayout)	as	follows:

In	the	same	layout	file	for	the	activity	(as	in	activity_main.xml)
In	a	separate	layout	file,	such	as	content_main.xml,	which	you	can	then	add	to	the	activity's	layout	file	with	an
include	statement:

<include	layout="@layout/content_main"	/>

You	need	to	set	the	content	sibling's	scrolling	behavior,	as	shown	below	with	the	RelativeLayout	group,	to	be	an
instance	of		AppBarLayout.ScrollingViewBehavior	:

4.2:	Menus

157

https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/support/design/widget/AppBarLayout.html

<RelativeLayout

			...

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			app:layout_behavior="@string/appbar_scrolling_view_behavior"

			...	>

</RelativeLayout>

The	layout	behavior	for	the		RelativeLayout		is	set	to	the	string	resource		@string/appbar_scrolling_view_behavior	,
which	controls	the	scrolling	behavior	of	the	screen	in	relation	to	the	app	bar	at	the	top.	This	string	resource	represents
the	following	string,	which	is	defined	in	the	values.xml	file	that	should	not	be	edited:

android.support.design.widget.AppBarLayout$ScrollingViewBehavior

This	behavior	is	defined	by	the	AppBarLayout.ScrollingViewBehavior	class.	This	behavior	should	be	used	by	Views
which	can	scroll	vertically—it	supports	nested	scrolling	to	automatically	scroll	any	AppBarLayout	siblings.

Adding	code	to	set	up	the	app	bar
If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the	code	needed	to	set	up	the	app	bar,	so
you	can	skip	this	step.

If	you	are	not	using	the	Basic	Activity	template,	you	can	follow	these	steps	to	set	up	the	app	bar	in	the	activity:

1.	 Make	sure	that	any	activity	that	you	want	to	show	an	app	bar	extends	AppCompatActivity:

public	class	MyActivity	extends	AppCompatActivity	{

...

}

2.	 In	the	activity's		onCreate()		method,	call	the	activity's	setSupportActionBar()	method,	and	pass	the	activity's	toolbar
(assuming	the	Toolbar	element's	id	is		toolbar).	The		setSupportActionBar()		method	sets	the	toolbar	as	the	app	bar
for	the	activity:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

			setSupportActionBar(toolbar);

}

The	activity	now	shows	the	app	bar.	By	default,	the	app	bar	contains	just	the	name	of	the	app.

Adding	the	options	menu

Android	provides	a	standard	XML	format	to	define	options	menu	items.	Instead	of	building	the	menu	in	your	activity's	code,
you	can	define	the	menu	and	all	its	items	in	an	XML	menu	resource.	A	menu	resource	defines	an	application	menu	(options
menu,	context	menu,	or	popup	menu)	that	can	be	inflated	with	MenuInflater,	which	loads	the	resource	as	a	Menu	object	in
your	activity	or	fragment.

If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the	menu	resource	for	you	and	inflates	the
options	menu	with	MenuInflater,	so	you	can	skip	this	step	and	go	right	to	"Defining	how	menu	items	appear".

4.2:	Menus

158

https://developer.android.com/reference/android/support/design/widget/AppBarLayout.ScrollingViewBehavior.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/support/design/widget/AppBarLayout.html
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html#setSupportActionBar(android.support.v7.widget.Toolbar)
https://developer.android.com/guide/topics/resources/menu-resource.html
https://developer.android.com/reference/android/view/MenuInflater.html
https://developer.android.com/reference/android/view/Menu.html

If	you	are	not	using	the	Basic	Activity	template,	use	the	resource-inflate	design	pattern,	which	makes	it	easy	to	create	an
options	menu.	Follow	these	steps	(refer	to	the	figure	below):	

1.	 XML	menu	resource.	Create	an	XML	menu	resource	file	for	the	menu	items,	and	assign	appearance	and	position
attributes	as	described	in	the	next	section.

2.	 Inflating	the	menu.	Override	the	onCreateOptionsMenu()	method	in	your	activity	or	fragment	to	inflate	the	menu.
3.	 Handling	menu	item	clicks.	Menu	items	are	views,	so	you	can	use	the		android:onClick		attribute	for	each	menu

item.	However,	the	onOptionsItemSelected()	method	can	handle	all	the	menu	item	clicks	in	one	place,	and	determine
which	menu	item	was	clicked,	which	makes	your	code	easier	to	understand.

4.	 Performing	actions.	Create	a	method	to	perform	an	action	for	each	options	menu	item.

Creating	an	XML	resource	for	the	menu

Follow	these	steps	to	add	the	menu	items	to	an	XML	menu	resource:

1.	 Click	the	res	directory,	and	choose	File	>	New	>	Android	resource	directory,	choose	menu	in	the	Resource	type
drop-down	menu,	and	click	OK.

2.	 Click	the	new	menu	directory,	and	choose	File	>	New	>	Menu	resource	file,	enter	the	name	of	the	file	as	menu_main
or	something	similar,	and	click	OK.	The	new	menu_main.xml	file	now	resides	within	the	menu	directory.

3.	 Open	the	menu_main.xml	file	(if	not	already	open),	and	click	the	Text	tab	next	to	the	Design	tab	at	the	bottom	of	the
pane	to	show	the	text	of	the	file.

4.	 Add	the	first	options	menu	item	using	the		<item	…	/>		tag.	In	this	example,	the	item	is	Settings:

<menu	xmlns:android="http://schemas.android.com/apk/res/android"

			...>

			<item

						android:id="@+id/action_settings"

						android:title="@string/settings"	/>

</menu>

4.2:	Menus

159

https://developer.android.com/reference/android/app/Activity.html#onCreateOptionsMenu(android.view.Menu)
https://developer.android.com/reference/android/app/Activity.html#onOptionsItemSelected(android.view.MenuItem)

After	setting	up	and	inflating	the	XML	resource	in	the	activity	or	fragment	code,	the	overflow	icon	in	the	app	bar,	when
clicked,	would	show	the	options	menu	with	just	one	option	(Settings):	

Defining	how	menu	items	appear

If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the	options	menu	with	one	option:	Settings.

To	add	more	options	menu	items,	add	more		<item	…	/>		tags	in	the	menu_main.xml	file.	For	example,	in	the	following
snippet,	two	options	menu	items	are	defined:		@string/settings		(Settings)	and		@string/action_order		(Order):

<menu	xmlns:android="http://schemas.android.com/apk/res/android"

			...>

			<item

						android:id="@+id/action_settings"

						android:title="@string/settings"	/>

			<item

						android:id="@+id/action_order"

						android:icon="@drawable/ic_order_white"

						android:title="@string/action_order"/>

</menu>

Within	each		<item	…	/>		tag	you	can	add	the	attributes	to	define	how	the	menu	item	appears,	such	as	the	order	of	its
appearance	relative	to	the	other	items,	and	whether	the	item	can	appear	as	an	icon	in	the	app	bar.	Any	item	you	set	to	not
appear	in	the	app	bar	(or	that	can't	fit	in	the	app	bar	given	the	display	orientation)	is	placed	in	order	in	the	overflow	menu).

Whenever	possible,	you	want	to	show	the	most	frequently	used	actions	using	icons	in	the	app	bar	so	that	the	user	can	click
them	without	having	to	first	click	the	overflow	button.

Adding	icons	for	menu	items

4.2:	Menus

160

To	specify	icons	for	actions,	you	need	to	first	add	the	icons	as	image	assets	to	the	drawable	folder	by	following	these	steps
(see	Image	Asset	Studio	for	a	complete	description):

1.	 Expand	res	in	the	Project	view,	and	right-click	(or	Command-click)	drawable.
2.	 Choose	New	>	Image	Asset.	The	Configure	Image	Asset	dialog	appears.
3.	 Choose	Action	Bar	and	Tab	Items	in	the	drop-down	menu.
4.	 Edit	the	name	of	the	icon	(for	example,	ic_order_white	for	the	Order	menu	item).
5.	 Click	the	clipart	image	(the	Android	logo)	to	select	a	clipart	image	as	the	icon.	A	page	of	icons	appears.	Click	the	icon

you	want	to	use.
6.	 (Optional)	Choose	HOLO_DARK	from	the	Theme	drop-down	menu.	This	sets	the	icon	to	be	white	against	a	dark-

colored	(or	black)	background.	Click	Next.
7.	 Click	Finish	in	the	Confirm	Icon	Path	dialog.

Icon	and	appearance	attributes

Use	the	following	attributes	to	govern	the	menu	item's	appearance:

	android:icon	:	An	image	to	use	as	the	menu	item	icon.	For	example,	the	following	menu	item	defines		ic_order_white	
as	its	icon:

<item

				android:id="@+id/action_order"

				android:icon="@drawable/ic_order_white"

				android:title="@string/action_order"/>

	android:title	:	A	string	for	the	title	of	the	menu	item.
	android:titleCondensed	:	A	string	to	use	as	a	condensed	title	for	situations	in	which	the	normal	title	is	too	long.

Position	attributes
Use	the		android:orderInCategory		attribute	to	specify	the	order	in	which	the	menu	items	appear	in	the	menu,	with	the
lowest	number	appearing	higher	in	the	menu.	This	is	usually	the	order	of	importance	of	the	item	within	the	menu.	For
example,	if	you	want	Order	to	be	first,	followed	by	Status,	Favorites,	and	Contact,	the	following	table	shows	the	priority	of
these	items	in	the	menu:

Menu	Item 	orderInCategory	attribute	

Order 10

Status 20

Favorites 40

Contact 100

4.2:	Menus

161

http://developer.android.com/tools/help/image-asset-studio.html

Note:	While	the	numbers	1,	2,	3,	and	4	would	also	work	in	the	above	example,	the	numbers	10,	20,	40,	and	100	leave
room	for	additional	menu	items	to	be	added	later	between	them.
Use	the		app:showAsAction		attribute	to	show	menu	items	as	icons	in	the	app	bar,	with	the	following	values:

	"always"	:	Always	place	this	item	in	the	app	bar.	Use	this	only	if	it's	critical	that	the	item	appear	in	the	app	bar	(such	as
a	Search	icon).	If	you	set	multiple	items	to	always	appear	in	the	app	bar,	they	might	overlap	something	else	in	the	app
bar,	such	as	the	app	title.
	"ifRoom"	:	Only	place	this	item	in	the	app	bar	if	there	is	room	for	it.	If	there	is	not	enough	room	for	all	the	items	marked
	"ifRoom"	,	the	items	with	the	lowest		orderInCategory		values	are	displayed	in	the	app	bar,	and	the	remaining	items	are
displayed	in	the	overflow	menu.
	"never"	:	Never	place	this	item	in	the	app	bar.	Instead,	list	the	item	in	the	app	bar's	overflow	menu.
	"withText"	:	Also	include	the	title	text	(defined	by		android:title)	with	the	item.	The	title	text	appears	anyway	if	the
item	appears	in	the	overflow	menu,	so	this	attribute	is	used	primarily	to	include	the	title	with	the	icon	in	the	app	bar.

For	example,	the	following	menu	item's	icon	appears	in	the	app	bar	only	if	there	is	room	for	it:

<item

			android:id="@+id/action_favorites"

			android:icon="@drawable/ic_favorites_white"

			android:orderInCategory="40"

			android:title="@string/action_favorites"

			app:showAsAction="ifRoom"	/>

4.2:	Menus

162

In	the	above	figure:

1.	 Options	menu	action	icons.	The	first	two	options	menu	items	appear	as	action	icons	in	the	app	bar:	Order	(the
shopping	cart	icon)	and	Info	(the	"i"	icon).

2.	 Overflow	button.	Clicking	the	overflow	button	shows	the	overflow	menu.
3.	 Options	overflow	menu.	The	overflow	menu	shows	more	of	the	options	menu:	Favorites	and	Contact.	Favorites

(the	heart	icon)	doesn't	fit	into	the	app	bar	in	vertical	orientation,	but	may	appear	in	horizontal	orientation	on	a
smartphone,	or	in	both	orientations	on	a	tablet,	as	shown	below.	

4.2:	Menus

163

Inflating	the	menu	resource

If	you	start	an	app	project	using	the	Basic	Activity	template,	the	template	adds	the	code	for	inflating	the	options	menu	with
MenuInflater,	so	you	can	skip	this	step.

If	you	are	not	using	the	Basic	Activity	template,	inflate	the	menu	resource	in	your	activity	by	using	the
onCreateOptionsMenu()	method	(with	the		Override		annotation)	with	the	getMenuInflater()	method	of	the	Activity	class.

The		getMenuInflater()		method	returns	a	MenuInflater,	which	is	a	class	used	to	instantiate	menu	XML	files	into	Menu
objects.	The	MenuInflater	class	provides	the	inflate()	method,	which	takes	as	a	parameter	the	resource		id		for	an	XML
layout	resource	to	load	(R.menu.menu_main		in	the	following	example),	and	the	Menu	to	inflate	into	(menu		in	the	following
example):

@Override

public	boolean	onCreateOptionsMenu(Menu	menu)	{

			getMenuInflater().inflate(R.menu.menu_main,	menu);

			return	true;

}

Handling	the	menu	item	click

As	with	a	button,	the		android:onClick		attribute	defines	a	method	to	call	when	this	menu	item	is	clicked.	You	must	declare
the	method	in	the	activity	as		public		and	accept	a		MenuItem		as	its	only	parameter,	which	indicates	the	item	clicked.

For	example,	you	could	define	the	Favorites	item	in	the	menu	resource	file	to	use	the		android:onClick		attribute	to	call	the
	onFavoritesClick()		method:

<item

								android:id="@+id/action_favorites"

								android:icon="@drawable/ic_favorites_white"

								android:orderInCategory="40"

								android:title="@string/action_favorites"

								app:showAsAction="ifRoom"

								android:onClick="onFavoritesClick"	/>

You	would	declare	the		onFavoritesClick()		method	in	the	activity:

public	void	onFavoritesClick(MenuItem	item)	{

				//	The	item	parameter	indicates	which	item	was	clicked.

				//	Add	code	to	handle	the	Favorites	click.

}

However,	the	onOptionsItemSelected()	method	of	the	Activities	class	can	handle	all	the	menu	item	clicks	in	one	place,	and
determine	which	menu	item	was	clicked,	which	makes	your	code	easier	to	understand.	The	Basic	Activity	template
provides	an	implementation	of	the		onOptionsItemSelected()		method	with	a		switch	case		block	to	call	the	appropriate
method	(such	as		showOrder)	based	on	the	menu	item's		id	,	which	you	can	retrieve	using	the	getItemId()	method	of	the
Adapter	class:

4.2:	Menus

164

https://developer.android.com/reference/android/app/Activity.html#onCreateOptionsMenu(android.view.Menu)
https://developer.android.com/reference/android/app/Activity.html#getMenuInflater()
https://developer.android.com/reference/android/view/MenuInflater.html
https://developer.android.com/reference/android/view/MenuInflater.html#inflate(int,%20android.view.Menu)
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/app/Activity.html#onOptionsItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/widget/Adapter.html#getItemId(int)

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

			switch	(item.getItemId())	{

						case	R.id.action_order:

									showOrder();

									return	true;

						case	R.id.action_status:

									showStatus();

									return	true;

						case	R.id.action_contact:

									showContact();

									return	true;

						default:

									//	Do	nothing

			}

			return	super.onOptionsItemSelected(item);

}

Contextual	menu
Use	a	contextual	menu	to	allow	users	to	take	an	action	on	a	selected	view.	You	can	provide	a	context	menu	for	any	View,
but	they	are	most	often	used	for	items	in	a	RecyclerView,	GridView,	or	other	view	collections	in	which	the	user	can	perform
direct	actions	on	each	item.

Android	provides	two	kinds	of	contextual	menus:

A	context	menu,	shown	on	the	left	side	in	the	figure	below,	appears	as	a	floating	list	of	menu	items	when	the	user
performs	a	long	tap	on	a	view	element	on	the	screen.	It	is	typically	used	to	modify	the	view	element	or	use	it	in	some
fashion.	For	example,	a	context	menu	might	include	Edit	to	edit	a	view	element,	Delete	to	delete	it,	and	Share	to
share	it	over	social	media.	Users	can	perform	a	contextual	action	on	one	view	element	at	a	time.
A	Contextual	action	bar,	shown	on	the	right	side	of	the	figure	below,	appears	at	the	top	of	the	screen	in	place	of	the
app	bar	or	underneath	the	app	bar,	with	action	items	that	affect	the	selected	view	element(s).	Users	can	perform	an
action	on	multiple	view	elements	at	once	(if	your	app	allows	it).	

Floating	context	menu

4.2:	Menus

165

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/widget/GridView.html

The	familiar	resource-inflate	design	pattern	is	used	to	create	a	floating	context	menu,	modified	to	include	registering
(associating)	the	context	menu	with	a	view:	

Follow	these	steps	to	create	a	floating	context	menu	for	one	or	more	view	elements	(refer	to	figure	above):

1.	 Create	an	XML	menu	resource	file	for	the	menu	items,	and	assign	appearance	and	position	attributes	(as	described	in
the	previous	section).

2.	 Register	a	view	to	the	context	menu	using	the	registerForContextMenu()	method	of	the	Activity	class.
3.	 Implement	the	onCreateContextMenu()	method	in	your	activity	or	fragment	to	inflate	the	menu.
4.	 Implement	the	onContextItemSelected()	method	in	your	activity	or	fragment	to	handle	menu	item	clicks.
5.	 Create	a	method	to	perform	an	action	for	each	context	menu	item.

Creating	the	XML	resource	file
Create	the	XML	menu	resource	directory	and	file	by	following	the	steps	in	the	previous	section.	Use	a	suitable	name	for	the
file,	such	as		menu_context	.	Add	the	context	menu	items	(in	this	example,	the	menu	items	are	Edit,	Share,	and	Delete):

<item

			android:id="@+id/context_edit"

			android:title="@string/edit"

			android:orderInCategory="10"/>

<item

			android:id="@+id/context_share"

			android:title="@string/share"

			android:orderInCategory="20"/>

<item

			android:id="@+id/context_delete"

			android:title="@string/delete"

			android:orderInCategory="30"/>

Registering	a	view	to	the	context	menu
Register	a	view	to	the	context	menu	by	calling	the	registerForContextMenu()	method	and	passing	it	the	view.	Registering	a
context	menu	for	a	view	sets	the	View.OnCreateContextMenuListener	on	the	view	to	this	activity,	so	that
onCreateContextMenu()	will	be	called	when	it	is	time	to	show	the	context	menu.	(You	implement		onCreateContextMenu		in
the	next	section.)

For	example,	in	the		onCreate()		method	for	the	activity,	add	the		registerForContextMenu()		statement:

...

//	Registering	the	context	menu	to	the	text	view	of	the	article.

TextView	article_text	=	(TextView)	findViewById(R.id.article);

registerForContextMenu(article_text);

...

4.2:	Menus

166

https://developer.android.com/reference/android/app/Activity.html#registerForContextMenu(android.view.View)
https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener.html#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)
https://developer.android.com/reference/android/app/Activity.html#onContextItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/app/Activity.html#registerForContextMenu(android.view.View)
https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener.html
https://developer.android.com/reference/android/app/Activity.html#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)

Multiple	views	can	be	registered	to	the	same	context	menu.	If	you	want	each	item	in	a	ListView	or	GridView	to	provide	the
same	context	menu,	register	all	items	for	a	context	menu	by	passing	the	ListView	or	GridView	to	registerForContextMenu().

Implementing	the	onCreateContextMenu()	method

When	the	registered	view	receives	a	long-click	event,	the	system	calls	the	onCreateContextMenu()	method,	which	you	can
override	in	your	activity	or	fragment.	This	is	where	you	define	the	menu	items,	usually	by	inflating	a	menu	resource.

For	example:

@Override

public	void	onCreateContextMenu(ContextMenu	menu,	View	v,

																									ContextMenu.ContextMenuInfo	menuInfo)	{

			super.onCreateContextMenu(menu,	v,	menuInfo);

			MenuInflater	inflater	=	getMenuInflater();

			inflater.inflate(R.menu.menu_context,	menu);

}

In	the	above	code:

The		menu		parameter	for	onCreateContextMenu()	is	the	context	menu	to	be	built.
The		v		parameter	is	the	view	registered	for	the	context	menu.
The		menuInfo		parameter	is	extra	information	about	the	view	registered	for	the	context	menu.	This	information	varies
depending	on	the	class	of	v,	which	could	be	a	RecyclerView	or	a	GridView.	If	you	are	registering	a	RecyclerView	or
GridView,	you	would	instantiate	a	ContextMenu.ContextMenuInfo	object	to	provide	the	information	about	the	item
selected,	and	pass	it	as		menuInfo	,	such	as	the	row	id,	position,	or	child	view.

The	MenuInflater	class	provides	the	inflate()	method,	which	takes	as	a	parameter	the	resource	id	for	an	XML	layout
resource	to	load	(menu_context		in	the	above	example),	and	the	Menu	to	inflate	into	(menu		in	the	above	example).

Implementing	the	onContextItemSelected()	method
When	the	user	clicks	on	a	menu	item,	the	system	calls	the	onContextItemSelected()	method.	You	override	this	method	in
your	activity	or	fragment	in	order	to	determine	which	menu	item	was	clicked,	and	for	which	view	the	menu	is	appearing.	You
also	use	it	to	implement	the	appropriate	action	for	the	menu	items,	such	as		editNote()		and		shareNote()		below	for	the
Edit	and	Share	menu	items.	For	example:

@Override

public	boolean	onContextItemSelected(MenuItem	item)	{

			switch	(item.getItemId())	{

						case	R.id.context_edit:

									editNote();

									return	true;

						case	R.id.context_share:

									shareNote();

									return	true;

						default:

									return	super.onContextItemSelected(item);

			}

}

The	above	example	uses	the	getItemId()	method	to	get	the		id		for	the	selected	menu	item,	and	uses	it	in	a		switch	case	
block	to	determine	which	action	to	take.	The		id		is	the		android:id		attribute	assigned	to	the	menu	item	in	the	XML	menu
resource	file.

When	the	user	performs	a	long-click	on	the	article	in	the	text	view,	the	floating	context	menu	appears	and	the	user	can	click
a	menu	item.

4.2:	Menus

167

https://developer.android.com/reference/android/widget/ListView.html
https://developer.android.com/reference/android/widget/GridView.html
https://developer.android.com/reference/android/widget/ListView.html
https://developer.android.com/reference/android/widget/GridView.html
https://developer.android.com/reference/android/app/Activity.html#registerForContextMenu(android.view.View)
https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener.html#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)
https://developer.android.com/reference/android/view/ContextMenu.ContextMenuInfo.html
https://developer.android.com/reference/android/view/MenuInflater.html
https://developer.android.com/reference/android/view/MenuInflater.html#inflate(int,%20android.view.Menu)
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/app/Activity.html#onContextItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/view/MenuItem.html#getItemId()

4.2:	Menus

168

If	you	are	using	the		menuInfo		information	for	a	RecyclerView	or	GridView,	you	would	add	a	statement	before	the	switch
case	block	to	gathers	the	specific	information	about	the	selected	view	(for		info)	by	using
AdapterView.AdapterContextMenuInfo:

AdapterView.AdapterContextMenuInfo	info	=

												(AdapterView.AdapterContextMenuInfo)	item.getMenuInfo();

Contextual	action	bar

A	contextual	action	bar	appears	at	the	top	of	the	screen	to	present	actions	the	user	can	perform	on	a	view	after	long-

clicking	the	view,	as	shown	in	the	figure	below.	

In	the	above	figure:

1.	 Contextual	action	bar.	The	bar	offers	three	actions	on	the	right	side	(Edit,	Share,	and	Delete)	and	the	Done	button
(left	arrow	icon)	on	the	left	side.

2.	 View.	View	on	which	a	long-click	triggers	the	contextual	action	bar.

The	contextual	action	bar	appears	only	when	contextual	action	mode,	a	system	implementation	of	ActionMode,	occurs	as	a
result	of	the	user	performing	a	long-click	on	the	View.

ActionMode	represents	a	user	interface	(UI)	mode	for	providing	alternative	interaction,	replacing	parts	of	the	normal	UI	until
finished.	For	example,	text	selection	is	implemented	as	an	ActionMode,	as	are	contextual	actions	that	work	on	a	selected
item	on	the	screen.	Selecting	a	section	of	text	or	long-clicking	a	view	triggers	ActionMode.

While	this	mode	is	enabled,	the	user	can	select	multiple	items	(if	your	app	allows	it),	deselect	items,	and	continue	to
navigate	within	the	activity.	The	action	mode	is	disabled	and	the	contextual	action	bar	disappears	when	the	user	deselects
all	items,	presses	the	Back	button,	or	taps	Done	(left-arrow	icon)	on	the	left	side	of	the	bar.

Follow	these	steps	to	create	a	contextual	action	bar	(refer	to	the	figure	below):

1.	 Create	an	XML	menu	resource	file	for	the	menu	items,	and	assign	an	icon	to	each	one	(as	described	in	a	previous
section).

2.	 Set	the	long-click	listener	to	the	view	that	should	trigger	the	contextual	action	bar	using	the	setOnLongClickListener()
method.	Call	startActionMode()	within	the	setOnLongClickListener()	method	when	the	user	performs	a	long	tap	on	the
view.

4.2:	Menus

169

https://developer.android.com/reference/android/widget/AdapterView.AdapterContextMenuInfo.html
https://developer.android.com/reference/android/view/ActionMode.html
https://developer.android.com/reference/android/view/View.html#setOnLongClickListener(android.view.View.OnLongClickListener)
https://developer.android.com/reference/android/app/Activity.html#startActionMode(android.view.ActionMode.Callback)

3.	 Implement	the	ActionMode.Callback	interface	to	handle	the	ActionMode	lifecycle.	Include	in	this	interface	the	action	for
responding	to	a	menu	item	click	in	the	onActionItemClicked()	callback	method.

4.	 Create	a	method	to	perform	an	action	for	each	context	menu	item.	

Creating	the	XML	resource	file

Create	the	XML	menu	resource	directory	and	file	by	following	the	steps	in	a	previous	section.	Use	a	suitable	name	for	the
file,	such	as		menu_context	.	Add	icons	for	the	context	menu	items	(in	this	example,	the	menu	items	are	Edit,	Share,	and
Delete).	For	example,	the	Edit	menu	item	would	have	these	attributes:

<item

			android:id="@+id/context_edit"

			android:orderInCategory="10"

			android:icon="@drawable/ic_action_edit_white"

			android:title="@string/edit"	/>

The	standard	contextual	action	bar	has	a	dark	background.	Use	a	light	or	white	color	for	the	icons.	If	you	are	using	clip	art
icons,	choose	HOLO_DARK	for	the	Theme	drop-down	menu	when	creating	the	new	image	asset.

Setting	the	long-click	listener
Use	setOnLongClickListener()	to	set	a	long-click	listener	to	the	View	that	should	trigger	the	contextual	action	bar.	Add	the
code	to	set	the	long-click	listener	to	the	activity	class	(such	as	MainActivity)	using	the	activity's		onCreate()		method.
Follow	these	steps:

1.	 Declare	the	member	variable		mActionMode		in	the	class	definition	for	the	activity:

private	ActionMode	mActionMode;

You	will	call	startActionMode()	to	enable	ActionMode,	which	returns	the	ActionMode	created.	By	saving	this	in	a
member	variable	(mActionMode),	you	can	make	changes	to	the	contextual	action	bar	in	response	to	other	events.

2.	 Set	up	the	contextual	action	bar	listener	in	the		onCreate()		method,	using		View		as	the	type	for	the	view	in	order	to
use	the		setOnLongClickListener	:

4.2:	Menus

170

https://developer.android.com/reference/android/view/ActionMode.Callback.html
https://developer.android.com/reference/android/view/ActionMode.Callback.html#onActionItemClicked(android.view.ActionMode,%20android.view.MenuItem)
https://developer.android.com/reference/android/view/View.html#setOnLongClickListener(android.view.View.OnLongClickListener)
https://developer.android.com/reference/android/app/Activity.html#startActionMode(android.view.ActionMode.Callback)
https://developer.android.com/reference/android/view/ActionMode.html

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			View	articleView	=	findViewById(article);

			articleView.setOnLongClickListener(new	View.OnLongClickListener()	{

						...

						//	Add	method	here	to	start	ActionMode	after	long-click.

						...

			});

}

Implementing	the	ActionMode.Callback	interface
Before	you	can	add	the	code	to		onCreate()		to	start	ActionMode,	you	must	implement	the	ActionMode.Callback	interface	to
manage	the	action	mode	lifecycle.	In	its	callback	methods,	you	can	specify	the	actions	for	the	contextual	action	bar,	and
respond	to	clicks	on	action	items.

1.	 Add	the	following	method	to	the	activity	class	(such	as	MainActivity)	to	implement	the	interface:

public	ActionMode.Callback	mActionModeCallback	=	new

																																					ActionMode.Callback()	{

			...

			//	Add	code	to	create	action	mode	here.

			...

}

2.	 Add	the		onCreateActionMode()		code	within	the	brackets	of	the	above	method	to	create	action	mode	(the	full	code	is
provided	at	the	end	of	this	section):

@Override

public	boolean	onCreateActionMode(ActionMode	mode,	Menu	menu)	{

		//	Inflate	a	menu	resource	providing	context	menu	items

		MenuInflater	inflater	=	mode.getMenuInflater();

		inflater.inflate(R.menu.menu_context,	menu);

		return	true;

}

The	onCreateActionMode()	method	inflates	the	menu	using	the	same	pattern	used	for	a	floating	context	menu.	But	this
inflation	occurs	only	when	ActionMode	is	created,	which	is	when	the	user	performs	a	long-click.	The	MenuInflater	class
provides	the	inflate()	method,	which	takes	as	a	parameter	the	resource		id		for	an	XML	layout	resource	to	load
(menu_context		in	the	above	example),	and	the	Menu	to	inflate	into	(menu		in	the	above	example).

3.	 Add	the	onActionItemClicked()	method	with	your	handlers	for	each	menu	item:

@Override

public	boolean	onActionItemClicked(ActionMode	mode,	MenuItem	item)	{

switch	(item.getItemId())	{

		case	R.id.context_edit:

					editNote();

					mode.finish();

					return	true;

		case	R.id.context_share:

					shareNote();

					mode.finish();

					return	true;

		default:

					return	false;

}

The	above	code	above	uses	the	getItemId()	method	to	get	the		id		for	the	selected	menu	item,	and	uses	it	in	a		switch
case		block	to	determine	which	action	to	take.	The		id		in	each		case		statement	is	the		android:id		attribute	assigned
to	the	menu	item	in	the	XML	menu	resource	file.

4.2:	Menus

171

https://developer.android.com/reference/android/view/ActionMode.Callback.html
https://developer.android.com/reference/android/view/ActionMode.Callback.html#onCreateActionMode(android.view.ActionMode,%20android.view.Menu)
https://developer.android.com/reference/android/view/MenuInflater.html
https://developer.android.com/reference/android/view/MenuInflater.html#inflate(int,%20android.view.Menu)
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/view/ActionMode.Callback.html#onActionItemClicked(android.view.ActionMode,%20android.view.MenuItem)
https://developer.android.com/reference/android/view/MenuItem.html#getItemId()

The	actions	shown	are	the		editNote()		and		shareNote()		methods,	which	you	can	create	in	the	same	activity.	After	the
action	is	picked,	you	use	the		mode.finish()		method	to	close	the	contextual	action	bar.

4.	 Add	the	onPrepareActionMode()	and	onDestroyActionMode()	methods,	which	manage	the	ActionMode	lifecycle:

@Override

public	boolean	onPrepareActionMode(ActionMode	mode,	Menu	menu)	{

						return	false;	//	Return	false	if	nothing	is	done.

}

The		onPrepareActionMode()		method	shown	above	is	called	each	time	ActionMode	occurs,	and	is	always	called	after
	onCreateActionMode()	.

@Override

public	void	onDestroyActionMode(ActionMode	mode)	{

						mActionMode	=	null;

}

The		onDestroyActionMode()		method	shown	above	is	called	when	the	user	exits	ActionMode	by	clicking	Done	in	the
contextual	action	bar,	or	clicking	on	a	different	view.

5.	 Review	the	full	code	for	the	ActionMode.Callback	interface	implementation:

public	ActionMode.Callback	mActionModeCallback	=	new

																																								ActionMode.Callback()	{

			@Override

			public	boolean	onCreateActionMode(ActionMode	mode,	Menu	menu)	{

						//	Inflate	a	menu	resource	providing	context	menu	items

						MenuInflater	inflater	=	mode.getMenuInflater();

						inflater.inflate(R.menu.menu_context,	menu);

						return	true;

			}

			//	Called	each	time	ActionMode	is	shown.	Always	called	after

			//	onCreateActionMode.

			@Override

			public	boolean	onPrepareActionMode(ActionMode	mode,	Menu	menu)	{

						return	false;	//	Return	false	if	nothing	is	done

			}

			//	Called	when	the	user	selects	a	contextual	menu	item

			@Override

			public	boolean	onActionItemClicked(ActionMode	mode,	MenuItem	item)	{

						switch	(item.getItemId())	{

									case	R.id.context_edit:

												editNote();

												mode.finish();

												return	true;

									case	R.id.context_share:

												shareNote();

												mode.finish();

												return	true;

									default:

												return	false;

						}

			}

			//	Called	when	the	user	exits	the	action	mode

			@Override

			public	void	onDestroyActionMode(ActionMode	mode)	{

						mActionMode	=	null;

			}

};

Starting	ActionMode

4.2:	Menus

172

https://developer.android.com/reference/android/view/ActionMode.Callback.html#onPrepareActionMode(android.view.ActionMode,%20android.view.Menu)
https://developer.android.com/reference/android/view/ActionMode.Callback.html#onDestroyActionMode(android.view.ActionMode)
https://developer.android.com/reference/android/view/ActionMode.Callback.html

You	use	startActionMode()	to	start	ActionMode	after	the	user	performs	a	long-click.

1.	 To	start	ActionMode,	add	the		onLongClick()		method	within	the	brackets	of	the		setOnLongClickListener		method	in
	onCreate()	:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			articleView.setOnLongClickListener(new	View.OnLongClickListener()	{

						//	Called	when	the	user	long-clicks	on	articleView

						public	boolean	onLongClick(View	view)	{

									if	(mActionMode	!=	null)	return	false;

									//	Start	the	contextual	action	bar

									//	using	the	ActionMode.Callback.

									mActionMode	=

															MainActivity.this.startActionMode(mActionModeCallback);

									view.setSelected(true);

									return	true;

						}

			});

}

The	above	code	first	ensures	that	the		ActionMode		instance	is	not	recreated	if	it's	already	active	by	checking	whether
	mActionMode		is	null	before	starting	the	action	mode:

if	(mActionMode	!=	null)	return	false;

When	the	user	performs	a	long-click,	the	call	is	made	to		startActionMode()		using	the	ActionMode.Callback	interface,
and	the	contextual	action	bar	appears	at	the	top	of	the	display.	The	setSelected()	method	changes	the	state	of	this
view	to	selected	(set	to		true).

2.	 Review	the	code	for	the		onCreate()		method	in	the	activity,	which	now	includes		setOnLongClickListener()		and
	startActionMode()	:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			//	set	up	the	contextual	action	bar	listener

			View	articleView	=	findViewById(article);

			articleView.setOnLongClickListener(new	View.OnLongClickListener()	{

						//	Called	when	the	user	long-clicks	on	articleView

						public	boolean	onLongClick(View	view)	{

									if	(mActionMode	!=	null)	return	false;

									//	Start	the	contextual	action	bar

									//	using	the	ActionMode.Callback.

									mActionMode	=

																MainActivity.this.startActionMode(mActionModeCallback);

									view.setSelected(true);

									return	true;

						}

			});

}

Popup	menu
A	PopupMenu	is	a	vertical	list	of	items	anchored	to	a	View.	It	appears	below	the	anchor	view	if	there	is	room,	or	above	the
view	otherwise.

4.2:	Menus

173

https://developer.android.com/reference/android/app/Activity.html#startActionMode(android.view.ActionMode.Callback)
https://developer.android.com/reference/android/view/View.html#setSelected(boolean)
https://developer.android.com/reference/android/widget/PopupMenu.html
https://developer.android.com/reference/android/view/View.html

A	popup	menu	is	typically	used	to	provide	an	overflow	of	actions	(similar	to	the	overflow	action	icon	for	the	options	menu)	or
the	second	part	of	a	two-part	command.	Use	a	popup	menu	for	extended	actions	that	relate	to	regions	of	content	in	your
activity.	Unlike	a	context	menu,	a	popup	menu	is	anchored	to	a	Button	(View),	is	always	available,	and	it's	actions	generally
do	not	affect	the	content	of	the	View.

For	example,	the	Gmail	app	uses	a	popup	menu	anchored	to	the	overflow	icon	in	the	app	bar	when	showing	an	email
message.	The	popup	menu	items	Reply,	Reply	All,	and	Forward	are	related	to	the	email	message,	but	don't	affect	or	act
on	the	message.	Actions	in	a	popup	menu	should	not	directly	affect	the	corresponding	content	(use	a	contextual	menu	to
directly	affect	selected	content).	As	shown	below,	a	popup	can	be	anchored	to	the	overflow	action	button	in	the	action	bar.	

Creating	a	pop-up	menu

Follow	these	steps	to	create	a	popup	menu	(refer	to	figure	below):	

1.	 Create	an	XML	menu	resource	file	for	the	popup	menu	items,	and	assign	appearance	and	position	attributes	(as
described	in	a	previous	section).

2.	 Add	an	ImageButton	for	the	popup	menu	icon	in	the	XML	activity	layout	file.
3.	 Assign	onClickListener()	to	the	button.
4.	 Override	the		onClick()		method	to	inflate	the	popup	menu	and	register	it	with	PopupMenu.OnMenuItemClickListener.
5.	 Implement	the	onMenuItemClick()	method.
6.	 Create	a	method	to	perform	an	action	for	each	popup	menu	item.

Creating	the	XML	resource	file
Create	the	XML	menu	resource	directory	and	file	by	following	the	steps	in	a	previous	section.	Use	a	suitable	name	for	the
file,	such	as		menu_popup	.

Adding	an	ImageButton	for	the	icon	to	click
Use	an	ImageButton	in	the	activity	layout	for	the	icon	that	triggers	the	popup	menu.	Popup	menus	are	anchored	to	a	view	in
the	activity,	such	as	an	ImageButton.	The	user	clicks	it	to	see	the	menu.

<ImageButton

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button_popup"

				android:src="@drawable/@drawable/ic_action_popup"/>

4.2:	Menus

174

https://developer.android.com/reference/android/widget/ImageButton.html
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/widget/PopupMenu.OnMenuItemClickListener.html
https://developer.android.com/reference/android/view/MenuItem.OnMenuItemClickListener.html#onMenuItemClick(android.view.MenuItem)
https://developer.android.com/reference/android/widget/ImageButton.html

Assigning	onClickListener	to	the	button

1.	 Create	a	member	variable	(mButton)	in	the	activity's	class	definition:

public	class	MainActivity	extends	AppCompatActivity	{

			private	ImageButton	mButton;

			...

}

2.	 In	the		onCreate()		method	for	the	same	activity,	assign	the		ImageButton		in	the	layout	to	the	member	variable,	and
assign	onClickListener()	to	the	button:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			mButton	=	(ImageButton)	findViewById(R.id.button_popup);

			mButton.setOnClickListener(new	View.OnClickListener()	{

			...

			//	define	onClick	here

			...

});

Inflating	the	popup	menu

As	part	of	the		setOnClickListener()		method	within		onCreate()	,	add	the		onClick()		method	to	inflate	the	popup	menu	and
register	it	with	PopupMenu.OnMenuItemClickListener:

@Override

public	void	onClick(View	v)	{

			//Creating	the	instance	of	PopupMenu

			PopupMenu	popup	=	new	PopupMenu(MainActivity.this,	mButton);

			//Inflating	the	Popup	using	xml	file

			popup.getMenuInflater().inflate(R.menu.menu_popup,	popup.getMenu());

			//registering	popup	with	OnMenuItemClickListener

			popup.setOnMenuItemClickListener(new

																														PopupMenu.OnMenuItemClickListener()	{

						...

						//	Add	onMenuItemClick	here

						...

												//	Perform	action	here

						...

}

After	instantiating	a	PopupMenu	object	(popup		in	the	above	example),	the	method	uses	the	MenuInflater	class	and	its
inflate()	method,	which	takes	as	parameters:

The	resource		id		for	an	XML	layout	resource	to	load	(menu_popup		in	the	example	above)
The	Menu	to	inflate	into	(popup.getMenu()		in	the	example	above).

The	code	then	registers	the	popup	with	the	listener,	PopupMenu.OnMenuItemClickListener.

Implementing	onMenuItemClick
To	perform	an	action	when	the	user	selects	a	popup	menu	item,	implement	the	onMenuItemClick()	callback	within	the
above		setOnClickListener()		method,	and	finish	the	method	with		popup.show		to	show	the	popup	menu:

4.2:	Menus

175

https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/widget/PopupMenu.OnMenuItemClickListener.html
https://developer.android.com/reference/android/widget/PopupMenu.html
https://developer.android.com/reference/android/view/MenuInflater.html
https://developer.android.com/reference/android/view/MenuInflater.html#inflate(int,%20android.view.Menu)
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/widget/PopupMenu.OnMenuItemClickListener.html
https://developer.android.com/reference/android/widget/PopupMenu.OnMenuItemClickListener.html#onMenuItemClick(android.view.MenuItem)

									public	boolean	onMenuItemClick(MenuItem	item)	{

												//	Perform	action	here

												return	true;

									}

						});

						popup.show();		//show	the	popup	menu

			}

});//	close	the	setOnClickListener	method

Putting	these	pieces	together,	the	entire		onCreate()		method	should	now	look	like	this:

private	ImageButton	mButton;

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			...

			//	popup	button	setup

			mButton	=	(ImageButton)	findViewById(R.id.button_popup);

			mButton.setOnClickListener(new	View.OnClickListener()	{

						@Override

						public	void	onClick(View	v)	{

									//Creating	the	instance	of	PopupMenu

									PopupMenu	popup	=	new	PopupMenu(MainActivity.this,	mButton);

									//Inflating	the	Popup	using	xml	file

									popup.getMenuInflater().inflate(R.menu.menu_popup,	popup.getMenu());

									//registering	popup	with	OnMenuItemClickListener

									popup.setOnMenuItemClickListener(new	PopupMenu.OnMenuItemClickListener()	{

												public	boolean	onMenuItemClick(MenuItem	item)	{

															//	Perform	action	here

															return	true;

												}

									});

									popup.show();//show	the	popup	menu

						}

			});//close	the	setOnClickListener	method

	}

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Using	an	Options	Menu

Learn	more
Android	API	Guide,	"Develop"	section:

Adding	the	App	Bar
Styles	and	Themes
Menus

4.2:	Menus

176

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/42_p_use_an_options_menu_and_radio_buttons.html
https://developer.android.com/training/appbar/index.html
http://developer.android.com/guide/topics/ui/themes.html
https://developer.android.com/guide/topics/ui/menus.html

Menu	Resource
Other:

Android	API	Guide,	"Design"	section:	Icons	and	other	downloadable	resources
Android	Studio	User's	Guide:	Image	Asset	Studio
Android	Developers	Blog:	"Holo	Everywhere"

4.2:	Menus

177

https://developer.android.com/guide/topics/resources/menu-resource.html
http://developer.android.com/design/downloads/index.html
http://developer.android.com/tools/help/image-asset-studio.html
http://android-developers.blogspot.com/2012/01/holo-everywhere.html

4.3:	Screen	Navigation
Contents:

Providing	users	with	a	path	through	your	app
Back-button	navigation
Hierarchical	navigation	patterns
Ancestral	navigation	(the	Up	button)
Descendant	navigation
Lateral	navigation	with	tabs	and	swipes
Related	practical
Learn	more

Providing	users	with	a	path	through	your	app
In	the	early	stages	of	developing	an	app,	you	should	determine	the	paths	users	should	take	through	your	app	in	order	to	do
something,	such	as	placing	an	order	or	browsing	through	content.	Each	path	enables	users	to	navigate	across,	into,	and
back	out	from	the	different	tasks	and	pieces	of	content	within	the	app.

In	many	cases	you	will	need	several	different	paths	through	your	app	that	offer	the	following	types	of	navigation:

Back	navigation:	Users	can	navigate	back	to	the	previous	screen	using	the	Back	button.
Hierarchical	navigation:	Users	can	navigate	through	a	hierarchy	of	screens	organized	with	a	parent	screen	for	every
set	of	child	screens.

Back-button	navigation

4.3:	Screen	Navigation

178

In	the	above	figure:

1.	 Starting	from	Launcher.
2.	 Clicking	the	Back	button	to	navigate	to	the	previous	screen.

You	don't	have	to	manage	the	Back	button	in	your	app.	The	system	handles	tasks	and	the	back	stack—the	list	of	previous
screens—automatically.	The	Back	button	by	default	simply	traverses	this	list	of	screens,	removing	the	current	screen	from
the	list	as	the	user	presses	it.

There	are,	however,	cases	where	you	may	want	to	override	the	behavior	for	the	Back	button.	For	example,	if	your	screen
contains	an	embedded	web	browser	in	which	users	can	interact	with	page	elements	to	navigate	between	web	pages,	you
may	wish	to	trigger	the	embedded	browser's	default	back	behavior	when	users	press	the	device's	Back	button.

The	onBackPressed()	method	of	the	Activity	class	is	called	whenever	the	activity	detects	the	user's	press	of	the	Back	key.
The	default	implementation	simply	finishes	the	current	activity,	but	you	can	override	this	to	do	something	else:

@Override

public	void	onBackPressed()	{

				//	Add	the	Back	key	handler	here.

				return;

}

If	your	code	triggers	an	embedded	browser	with	its	own	behavior	for	the	Back	key,	you	should	return	the	Back	key	behavior
to	the	system's	default	behavior	if	the	user	uses	the	Back	key	to	go	beyond	the	beginning	of	the	browser's	internal	history.

Hierarchical	navigation	patterns

4.3:	Screen	Navigation

179

https://developer.android.com/reference/android/app/Activity.html#onBackPressed()

To	give	the	user	a	path	through	the	full	range	of	an	app's	screens,	the	best	practice	is	to	use	some	form	of	hierarchical
navigation.	An	app's	screens	are	typically	organized	in	a	parent-child	hierarchy,	as	shown	in	the	figure	below:	

In	the	figure	above:

1.	 Parent	screen.	A	parent	screen	(such	as	a	news	app's	home	screen)	enables	navigation	down	to	child	screens.
The	main	activity	of	an	app	is	usually	the	parent	screen.
Implement	a	parent	screen	as	an	Activity	with	descendant	navigation	to	one	or	more	child	screens.

2.	 First-level	child	screen	siblings.	Siblings	are	screens	in	the	same	position	in	the	hierarchy	that	share	the	same
parent	screen	(like	brothers	and	sisters).

In	the	first	level	of	siblings,	the	child	screens	may	be	collection	screens	that	collect	the	headlines	of	stories,	as
shown	above.
Implement	each	child	screen	as	an	Activity	or	Fragment.
Implement	lateral	navigation	to	navigate	from	one	sibling	to	another	on	the	same	level.
If	there	is	a	second	level	of	screens,	the	first	level	child	screen	is	the	parent	to	the	second	level	child	screen
siblings.	Implement	descendant	navigation	to	the	second-level	child	screens.

3.	 Second-level	child	screen	siblings.	In	news	apps	and	others	that	offer	multiple	levels	of	information,	the	second
level	of	child	screen	siblings	might	offer	content,	such	as	stories.

Implement	a	second-level	child	screen	sibling	as	another	Activity	or	Fragment.
Stories	at	this	level	may	include	embedded	story	elements	such	as	videos,	maps,	and	comments,	which	might	be
implemented	as	fragments.

You	can	enable	the	user	to	navigate	up	to	and	down	from	a	parent,	and	sideways	among	siblings:

Descendant	navigation:	Navigating	down	from	a	parent	screen	to	a	child	screen.
Ancestral	navigation:	Navigating	up	from	a	child	screen	to	a	parent	screen.
Lateral	navigation:	Navigating	from	one	sibling	to	another	sibling	(at	the	same	level).

You	can	use	a	main	activity	(as	a	parent	screen)	and	then	other	activities	or	fragments	to	implement	a	hierarchy	of	screens
within	an	app.

Main	activity	with	other	activities

If	the	first-level	child	screen	siblings	have	another	level	of	child	screens	under	them,	you	should	implement	the	first-level
screens	as	activities,	so	that	their	lifecycles	are	managed	properly	before	calling	any	second-level	child	screens.

For	example,	in	the	figure	above,	the	parent	screen	is	most	likely	the	main	activity.	An	app's	main	activity	(usually
MainActivity.java)	is	typically	the	parent	screen	for	all	other	screens	in	your	app,	and	you	implement	a	navigation	pattern	in
the	main	activity	to	enable	the	user	to	go	to	other	activities	or	fragments.	For	example,	you	can	implement	navigation	using
an	Intent	that	starts	an	activity.

4.3:	Screen	Navigation

180

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/content/Intent.html

Tip:	Using	an	Intent	in	the	current	activity	to	start	another	activity	adds	the	current	activity	to	the	call	stack,	so	that	the	Back
button	in	the	other	activity	(described	in	the	previous	section)	returns	the	user	to	the	current	activity.

As	you	learned	previously,	the	Android	system	initiates	code	in	an	Activity	instance	with	callback	methods	that	manage	the
activity's	lifecycle	for	you.	(A	previous	lesson	covers	the	activity	lifecycle;	for	more	information,	see	"Managing	the	Activity
Lifecycle"	in	the	Training	section	of	the	Android	Developer	Develop	guide.)

The	hierarchy	of	parent	and	child	activities	is	defined	in	the	AndroidManifest.xml	file.	For	example,	the	following	defines
	OrderActivity		as	a	child	of	the	parent		MainActivity	:

<activity	android:name=".OrderActivity"

			android:label="@string/title_activity_order"

			android:parentActivityName=

																								"com.example.android.droidcafe.MainActivity">

			<meta-data

						android:name="android.support.PARENT_ACTIVITY"

						android:value=".MainActivity"/>

</activity>

Main	activity	with	fragments
If	the	child	screen	siblings	do	not	have	another	level	of	child	screens	under	them,	you	can	implement	them	as	fragments.	A
Fragment	represents	a	behavior	or	portion	of	a	user	interface	within	in	an	activity.	Think	of	a	fragment	as	a	modular	section
of	an	activity	which	has	its	own	lifecycle,	receives	its	own	input	events,	and	which	you	can	add	or	remove	while	the	activity
is	running.

You	can	combine	multiple	fragments	in	a	single	activity.	For	example,	in	a	section	sibling	screen	showing	a	news	story	and
implemented	as	an	activity,	you	might	have	a	child	screen	for	a	video	clip	implemented	as	a	fragment.	You	would
implement	a	way	for	the	user	to	navigate	to	the	video	clip	fragment,	and	then	back	to	the	activity	showing	the	story.

Ancestral	navigation	(the	Up	button)
With	ancestral	navigation	in	a	multitier	hierarchy,	you	enable	the	user	to	go	up	from	a	section	sibling	to	the	collection
sibling,	and	then	up	to	the	parent	screen.	

In	the	above	figure:

1.	 Up	button	for	ancestral	navigation	from	the	first-level	siblings	to	the	parent.
2.	 Up	button	for	ancestral	navigation	from	second-level	siblings	to	the	first-level	child	screen	acting	as	a	parent	screen.

The	Up	button	is	used	to	navigate	within	an	app	based	on	the	hierarchical	relationships	between	screens.	For	example
(referring	to	the	figure	above):

4.3:	Screen	Navigation

181

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/training/basics/activity-lifecycle/index.html
https://developer.android.com/reference/android/app/Fragment.html

If	a	first-level	child	screen	offers	headlines	to	navigate	to	second-level	child	screens,	the	second-level	child	screen
siblings	should	offer	Up	buttons	that	return	to	the	first-level	child	screen,	which	is	their	shared	parent.
If	the	parent	screen	offers	navigation	to	first-level	child	siblings,	then	the	first-level	child	siblings	should	offer	an	Up
button	that	returns	to	the	parent	screen.
If	the	parent	screen	is	the	topmost	screen	in	an	app	(that	is,	the	app's	home	screen),	it	should	not	offer	an	Up	button.

Tip:	The	Back	button	below	the	screen	differs	from	the	Up	button.	The	Back	button	provides	navigation	to	whatever	screen
you	viewed	previously.	If	you	have	several	children	screens	that	the	user	can	navigate	through	using	a	lateral	navigation
pattern	(as	described	later	in	this	chapter),	the	Back	button	would	send	the	user	back	to	the	previous	child	screen,	not	to
the	parent	screen.	Use	an	Up	button	if	you	want	to	provide	ancestral	navigation	from	a	child	screen	back	to	the	parent
screen.	For	more	information	about	Up	navigation,	see	Providing	Up	Navigation.

See	the	"Menus"	concept	chapter	for	details	on	how	to	implement	the	app	bar.	To	provide	the	Up	button	for	a	child	screen
activity,	declare	the	activity's	parent	to	be	MainActivity	in	the	AndroidManifest.xml	file.	You	can	also	set	the		android:label	
to	a	title	for	the	activity	screen,	such	as	"Order	Activity"	(extracted	into	the	string	resource		title_activity_order		in	the
code	below).	Follow	these	steps	to	declare	the	parent	in	AndroidManifest.xml:

1.	 Open	AndroidManifest.xml.
2.	 Change	the	activity	element	for	the	child	screen	activity	(in	this	example,		OrderActivity)	to	the	following:

			<activity	android:name=".OrderActivity"

					android:label="@string/title_activity_order"

					android:parentActivityName=

													"com.example.android.optionsmenuorderactivity.MainActivity">

					<meta-data

								android:name="android.support.PARENT_ACTIVITY"

								android:value=".MainActivity"/>

		</activity>

The	child	("Order	Activity")	screen	now	includes	the	Up	button	in	the	app	bar	(highlighted	in	the	figure	below),	which	the
user	can	tap	to	navigate	back	to	the	parent	screen.	

Descendant	navigation

4.3:	Screen	Navigation

182

http://developer.android.com/training/implementing-navigation/ancestral.html

With	descendant	navigation,	you	enable	the	user	to	go	from	the	parent	screen	to	a	first-level	child	screen,	and	from	a	first-
level	child	screen	down	to	a	second-level	child	screen.	

In	the	above	figure:

1.	 Descendant	navigation	from	parent	to	first-level	child	screen.
2.	 Descendant	navigation	from	headline	in	a	first-level	child	screen	to	a	second-level	child	screen.

Buttons	or	targets
The	best	practice	for	descendant	navigation	from	the	parent	screen	to	collection	siblings	is	to	use	buttons	or	simple	targets
such	as	an	arrangement	of	images	or	iconic	buttons	(also	known	as	a	dashboard).	When	the	user	touches	a	button,	the
collection	sibling	screen	opens,	replacing	the	current	context	(screen)	entirely.

Tip:	Buttons	and	simple	targets	are	rarely	used	for	navigating	to	section	siblings	within	a	collection.	See	lists,	carousels,
and	cards	in	the	next	section.	

In	the	figure	above:

1.	 Buttons	on	a	parent	screen.
2.	 Targets	(Image	buttons	or	icons)	on	a	parent	screen.
3.	 Descendant	navigation	pattern	from	parent	screen	to	first-level	child	siblings.

A	dashboard	usually	has	either	two	or	three	rows	and	columns,	with	large	touch	targets	to	make	it	easy	to	use.	Dashboards
are	best	when	each	collection	sibling	is	equally	important.	You	can	use	a	LinearLayout,	RelativeLayout,	or	GridLayout.	See
Layouts	for	an	overview	of	how	layouts	work.

4.3:	Screen	Navigation

183

https://developer.android.com/reference/android/widget/LinearLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.html
https://developer.android.com/reference/android/widget/GridLayout.html
https://developer.android.com/guide/topics/ui/declaring-layout.html

Navigation	drawer

A	navigation	drawer	is	a	panel	that	usually	displays	navigation	options	on	the	left	edge	of	the	screen,	as	shown	on	the	right
side	of	the	figure	below.	It	is	hidden	most	of	the	time,	but	is	revealed	when	the	user	swipes	a	finger	from	the	left	edge	of	the
screen	or	touches	the	navigation	icon	in	the	app	bar,	as	shown	on	the	left	side	of	the	figure	below.

In	the	above	figure:

1.	 Navigation	icon	in	the	app	bar
2.	 Navigation	drawer
3.	 Navigation	drawer	menu	item

A	good	example	of	a	navigation	drawer	is	in	the	Gmail	app,	which	provides	access	to	the	Inbox,	labelled	email	folders,	and
settings.	The	best	practice	for	employing	a	navigation	drawer	is	to	provide	descendant	navigation	from	the	parent	activity	to
all	of	the	other	activities	or	fragments	in	an	app.	It	can	display	many	navigation	targets	at	once—for	example,	it	could
contain	buttons	(like	a	dashboard),	tabs,	or	a	list	of	items	(like	the	Gmail	drawer).

To	make	a	navigation	drawer	in	your	app,	you	need	to	do	the	following:

1.	 Create	the	following	layouts:
A	navigation	drawer	as	the	activity	layout's	root	view.
A	navigation	view	for	the	drawer	itself.
An	app	bar	layout	that	will	include	a	navigation	icon	button.
A	content	layout	for	the	activity	that	displays	the	navigation	drawer.
A	layout	for	the	navigation	drawer	header.

2.	 Populate	the	navigation	drawer	menu	with	item	titles	and	icons.
3.	 Set	up	the	navigation	drawer	and	item	listeners	in	the	activity	code.
4.	 Handle	the	navigation	menu	item	selections.

Creating	the	navigation	drawer	layout
To	create	a	navigation	drawer	layout,	use	the	DrawerLayout	APIs	available	in	the	Support	Library.	For	design
specifications,	follow	the	design	principles	for	navigation	drawers	in	the	Navigation	Drawer	design	guide.

4.3:	Screen	Navigation

184

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
https://developer.android.com/tools/support-library/index.html
https://developer.android.com/design/patterns/navigation-drawer.html

To	add	a	navigation	drawer,	use	a		DrawerLayout		as	the	root	view	of	your	activity's	layout.	Inside	the		DrawerLayout	,	add
one	view	that	contains	the	main	content	for	the	screen	(your	primary	layout	when	the	drawer	is	hidden)	and	another	view,
typically	a	NavigationView,	that	contains	the	contents	of	the	navigation	drawer.

Tip:	To	make	your	layouts	simpler	to	understand,	use	the		include		tag	to	include	an	XML	layout	within	another	XML	layout.

For	example,	the	following	layout	uses:

A		DrawerLayout		as	the	root	of	the	activity's	layout	in	activity_main.xml.
The	main	content	of	screen	defined	in	the	app_bar_main.xml	layout	file.
A	NavigationView	that	represents	a	standard	navigation	menu	that	can	be	populated	by	a	menu	resource	XML	file.

Refer	to	the	figure	below	that	corresponds	to	this	layout:

activity_main.xml:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:id="@+id/drawer_layout"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:fitsSystemWindows="true"

				tools:openDrawer="start">

				<include

								layout="@layout/app_bar_main"

								android:layout_width="match_parent"

								android:layout_height="match_parent"	/>

				<android.support.design.widget.NavigationView

								android:id="@+id/nav_view"

								android:layout_width="wrap_content"

								android:layout_height="match_parent"

								android:layout_gravity="start"

								android:fitsSystemWindows="true"

								app:headerLayout="@layout/nav_header_main"

								app:menu="@menu/activity_main_drawer"	/>

</android.support.v4.widget.DrawerLayout>

4.3:	Screen	Navigation

185

https://developer.android.com/reference/android/support/design/widget/NavigationView.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.html

In	the	above	figure:

1.	 DrawerLayout	is	the	root	view	of	the	activity's	layout.
2.	 The	included		app_bar_main		(app_bar_main.xml)	uses	a	CoordinatorLayout	as	its	root,	and	defines	the	app	bar	layout

with	a	Toolbar	which	will	include	the	navigation	icon	to	open	the	drawer.
3.	 The	NavigationView	defines	the	navigation	drawer	layout	and	its	header,	and	adds	menu	items	to	it.

Note	the	following	in	the	activity_main.xml	layout:

The		android:id		for	the	DrawerLayout	view	is		drawer_layout	.	You	will	use	this	id	to	instantiate	a		drawer		object	in
your	code.
The		android:id		for	the		NavigationView		is		nav_view	.	You	will	use	this	id	to	instantiate	a		navigationView		object	in
your	code.
The		NavigationView		must	specify	its	horizontal	gravity	with	the		android:layout_gravity		attribute.	Use	the		"start"	
value	for	this	attribute	(rather	than		"left"),	so	that	if	the	app	is	used	with	right-to-left	(RTF)	languages,	the	drawer
appears	on	the	right	rather	than	the	left	side.

		android:layout_gravity="start"

Use	the	android:fitsSystemWindows="true"		attribute	to	set	the	padding	of	the		DrawerLayout		and	the		NavigationView		to
ensure	the	contents	don't	overlay	the	system	windows.		DrawerLayout		uses		fitsSystemWindows		as	a	sign	that	it	needs
to	inset	its	children	(such	as	the	main	content	view),	but	still	draw	the	top	status	bar	background	in	that	space.	As	a
result,	the	navigation	drawer	appears	to	be	overlapping,	but	not	obscuring,	the	translucent	top	status	bar.	The	insets
you	get	from		fitsSystemWindows		will	be	correct	on	all	platform	versions	to	ensure	your	content	does	not	overlap	with
system-provided	UI	components.

The	navigation	drawer	header

4.3:	Screen	Navigation

186

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.html

The		NavigationView		specifies	the	layout	for	the	header	of	the	navigation	drawer	with	the	attribute
	app:headerLayout="@layout/nav_header_main"	.	The	nav_header_main.xml	file	defines	the	layout	of	this	header	to	include
an		ImageView		and	a		TextView	,	which	is	typical	for	a	navigation	drawer,	but	you	could	also	include	other	Views.

Tip:	The	header's	height	should	be	160dp,	which	you	should	extract	into	a	dimension	resource	(nav_header_height).

nav_header_main.xml:

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="@dimen/nav_header_height"

				android:background="@drawable/side_nav_bar"

				android:gravity="bottom"

				android:orientation="vertical"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				android:theme="@style/ThemeOverlay.AppCompat.Dark">

				<ImageView

								android:id="@+id/imageView"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:paddingTop="@dimen/nav_header_vertical_spacing"

								android:src="@android:drawable/sym_def_app_icon"	/>

				<TextView

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:paddingTop="@dimen/nav_header_vertical_spacing"

								android:text="@string/my_app_title"

								android:textAppearance="@style/TextAppearance.AppCompat.Body1"	/>

</LinearLayout>

The	app	bar	layout
The		include		tag	in	the		activity_main		layout	includes	the		app_bar_main		layout,	which	uses	a	CoordinatorLayout	as	its
root.	The	app_bar_main.xml	layout	file	defines	the	app	bar	layout	with	the	Toolbar	class	as	shown	previously	in	the
chapter	about	menus.	It	also	defines	a	floating	action	button,	and	uses	an		include		tag	to	include	the		content_main	
(content_main.xml)	layout:

app_bar_main.xml:

4.3:	Screen	Navigation

187

https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:fitsSystemWindows="true"

				tools:context="com.example.android.navigationexperiments.MainActivity">

				<android.support.design.widget.AppBarLayout

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:theme="@style/AppTheme.AppBarOverlay">

								<android.support.v7.widget.Toolbar

												android:id="@+id/toolbar"

												android:layout_width="match_parent"

												android:layout_height="?attr/actionBarSize"

												android:background="?attr/colorPrimary"

												app:popupTheme="@style/AppTheme.PopupOverlay"	/>

				</android.support.design.widget.AppBarLayout>

				<include	layout="@layout/content_main"	/>

				<android.support.design.widget.FloatingActionButton

								android:id="@+id/fab"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_gravity="bottom|end"

								android:layout_margin="@dimen/fab_margin"

								android:src="@android:drawable/ic_dialog_email"	/>

</android.support.design.widget.CoordinatorLayout>

Note	the	following:

The		app_bar_main		layout	uses	a	CoordinatorLayout	as	its	root,	and	includes	the		content_main		layout.
The		app_bar_main		layout	uses	the		android:fitsSystemWindows="true"		attribute	to	set	the	padding	of	the	app	bar	to
ensure	that	it	doesn't	overlay	the	system	windows	such	as	the	status	bar.

The	content	layout	for	the	main	activity	screen
The	above	layout	uses	an		include		tag	to	include	the		content_main		layout,	which	defines	the	layout	of	the	main	activity
screen	(content_main.xml).	In	the	example	layout	below,	the	main	activity	screen	shows	a	TextView	that	displays	the
string	"Hello	World!":

content_main.xml:

4.3:	Screen	Navigation

188

https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				app:layout_behavior="@string/appbar_scrolling_view_behavior"

				tools:context="com.example.android.navigationexperiments.MainActivity"

				tools:showIn="@layout/app_bar_main">

				<TextView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:text="@string/hello_world"	/>

</RelativeLayout>

Note	the	following:

The		content_main		layout	must	be	the	first	child	in	the		DrawerLayout		because	the	drawer	must	be	on	top	of	the
content.	In	our	layout	above,	the		content_main		layout	is	included	in	the		app_bar_main		layout,	which	is	the	first	child.
The		content_main		layout	uses	a		RelativeLayout		view	group	set	to	match	the	parent	view's	width	and	height,	because
it	represents	the	entire	UI	when	the	navigation	drawer	is	hidden.
The	layout	behavior	for	the		RelativeLayout		is	set	to	the	string	resource		@string/appbar_scrolling_view_behavior	,
which	controls	the	scrolling	behavior	of	the	screen	in	relation	to	the	app	bar	at	the	top.	This	behavior	is	defined	by	the
AppBarLayout.ScrollingViewBehavior	class.	This	behavior	should	be	used	by	Views	which	can	scroll	vertically—it
supports	nested	scrolling	to	automatically	scroll	any	AppBarLayout	siblings.

Populating	the	navigation	drawer	menu
The		NavigationView		in	the		activity_main		layout	specifies	the	menu	items	for	the	navigation	drawer	using	the	following
statement:

app:menu="@menu/activity_main_drawer"

The	menu	items	are	defined	in	the		activity_main_drawer.xml		file,	which	is	located	under	app	>	res	>	menu.	The		<group>
</group>		tag	defines	a	menu	group—a	collection	of	items	that	share	traits,	such	as	whether	they	are	visible,	enabled,	or
checkable.	A	group	must	contains	one	or	more		<item></>		elements	and	be	a	child	of	a		<menu>		element,	as	shown	below.
In	addition	to	defining	each	menu	item's	title	with	the		android:title		attribute,	the	file	also	defines	each	menu	item's	icon
with	the		android:icon		attribute.

The	group	is	defined	with	the		android:checkableBehavior		attribute.	This	attribute	lets	you	put	interactive	elements	within	the
navigation	drawer,	such	as	toggle	switches	that	can	be	turned	on	or	off,	and	checkboxes	and	radio	buttons	that	can	be
selected.	The	choices	for	this	attribute	are:

	single	:	Only	one	item	from	the	group	can	be	checked.	Use	for	radio	buttons.
	all	:	All	items	can	be	checked.	Use	for	checkboxes.
	none	:	No	items	are	checkable.

4.3:	Screen	Navigation

189

https://developer.android.com/reference/android/support/design/widget/AppBarLayout.ScrollingViewBehavior.html
https://developer.android.com/reference/android/support/design/widget/AppBarLayout.html

<?xml	version="1.0"	encoding="utf-8"?>

<menu	xmlns:android="http://schemas.android.com/apk/res/android">

				<group	android:checkableBehavior="none">

								<item

												android:id="@+id/nav_camera"

												android:icon="@drawable/ic_menu_camera"

												android:title="@string/import_camera"	/>

								<item

												android:id="@+id/nav_gallery"

												android:icon="@drawable/ic_menu_gallery"

												android:title="@string/gallery"	/>

								<item

												android:id="@+id/nav_slideshow"

												android:icon="@drawable/ic_menu_slideshow"

												android:title="@string/slideshow"	/>

								<item

												android:id="@+id/nav_manage"

												android:icon="@drawable/ic_menu_manage"

												android:title="@string/tools"	/>

				</group>

				<item	android:title="@string/communicate">

								<menu>

												<item

																android:id="@+id/nav_share"

																android:icon="@drawable/ic_menu_share"

																android:title="@string/share"	/>

												<item

																android:id="@+id/nav_send"

																android:icon="@drawable/ic_menu_send"

																android:title="@string/send"	/>

								</menu>

				</item>

</menu>

Setting	up	the	navigation	drawer	and	item	listeners
To	use	a	listener	for	the	navigation	drawer's	menu	items,	the	activity	hosting	the	navigation	drawer	must	implement	the
OnNavigationItemSelectedListener	interface:

1.	 Implement		NavigationView.OnNavigationItemSelectedListener		in	the	class	definition:

public	class	MainActivity	extends	AppCompatActivity

															implements	NavigationView.OnNavigationItemSelectedListener	{

...

}

This	interface	offers	the	onNavigationItemSelected()	method,	which	is	called	when	an	item	in	the	navigation	drawer
menu	item	is	tapped.	As	you	enter		OnNavigationItemSelectedListener	,	the	red	warning	bulb	appears	on	the	left	margin.

2.	 Click	the	red	warning	bulb,	choose	Implement	methods,	and	choose	the
onNavigationItemSelected(item:MenuItem):boolean	method.

Android	Studio	adds	a	stub	for	the	method:

@Override

				public	boolean	onNavigationItemSelected(MenuItem	item)	{

								return	false;

				}

}

You	learn	how	to	use	this	stub	in	the	next	section.

4.3:	Screen	Navigation

190

https://developer.android.com/reference/android/support/design/widget/NavigationView.OnNavigationItemSelectedListener.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.OnNavigationItemSelectedListener.html#onNavigationItemSelected(android.view.MenuItem)

3.	 Before	setting	up	the	navigation	item	listener,	add	code	to	the	activity's		onCreate()		method	to	instantiate	the
DrawerLayout	and	NavigationView	objects	(drawer		and		navigationView		in	the	code	below):

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			.	.	.

			DrawerLayout	drawer	=	(DrawerLayout)

																																findViewById(R.id.drawer_layout);

			ActionBarDrawerToggle	toggle	=

															new	ActionBarDrawerToggle(this,	drawer,	toolbar,

															R.string.navigation_drawer_open,

															R.string.navigation_drawer_close);

			if	(drawer	!=	null)	{

						drawer.addDrawerListener(toggle);

			}

			toggle.syncState();

			NavigationView	navigationView	=	(NavigationView)

															findViewById(R.id.nav_view);

			if	(navigationView	!=	null)	{

						navigationView.setNavigationItemSelectedListener(this);

			}

}

The	above	code	instantiates	an	ActionBarDrawerToggle,	which	substitutes	a	special	drawable	for	the	activity's	Up
button	in	the	app	bar,	and	links	the	activity	to	the	DrawerLayout.	The	special	drawable	appears	as	a	"hamburger"
navigation	icon	when	the	drawer	is	closed,	and	animates	into	an	arrow	as	the	drawer	opens.

Note:	Be	sure	to	use	the	ActionBarDrawerToggle	in	support-library-v7.appcompact,	not	the	version	in	support-library-
v4.
Tip:	You	can	customize	the	animated	toggle	by	defining	the	drawerArrowStyle	in	your	ActionBar	theme	(for	more
detailed	information	about	the	ActionBar	theme,	see	Adding	the	App	Bar	in	the	Android	Developer	documentation.

The	above	code	implements	addDrawerListener()	to	listen	for	drawer	open	and	close	events,	so	that	when	the	user
taps	custom	drawable	button,	the	navigation	drawer	slides	out.

You	must	also	use	the	syncState()	method	of	ActionBarDrawerToggle	to	synchronize	the	state	of	the	drawer	indicator.
The	synchronization	must	occur	after	the	DrawerLayout's	instance	state	has	been	restored,	and	any	other	time	when
the	state	may	have	diverged	in	such	a	way	that	the	ActionBarDrawerToggle	was	not	notified.

The	above	code	ends	by	setting	a	listener,		setNavigationItemSelectedListener()	,	to	the	navigation	drawer	to	listen	for
item	clicks.

4.	 The	ActionBarDrawerToggle	also	lets	you	specify	the	strings	to	use	to	describe	the	open/close	drawer	actions	for
accessibility	services.	Define	the	following	strings	in	your	strings.xml	file:

<string	name="navigation_drawer_open">Open	navigation	drawer</string>

<string	name="navigation_drawer_close">Close	navigation	drawer</string>

Handling	navigation	menu	item	selections

Write	code	in	the	onNavigationItemSelected()	method	stub	to	handle	menu	item	selections.	This	method	is	called	when	an
item	in	the	navigation	drawer	menu	is	tapped.

It	uses		if		statements	to	take	the	appropriate	action	based	on	the	menu	item's		id	,	which	you	can	retrieve	using	the
getItemId()	method:

4.3:	Screen	Navigation

191

https://developer.android.com/reference/android/support/v7/app/ActionBarDrawerToggle.html
https://developer.android.com/reference/android/support/v7/app/ActionBarDrawerToggle.html
https://developer.android.com/reference/android/support/v7/appcompat/R.styleable.html#DrawerArrowToggle
https://developer.android.com/training/appbar/index.html
https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html#addDrawerListener(android.support.v4.widget.DrawerLayout.DrawerListener)
https://developer.android.com/reference/android/support/v7/app/ActionBarDrawerToggle.html#syncState()
https://developer.android.com/reference/android/support/v7/app/ActionBarDrawerToggle.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.OnNavigationItemSelectedListener.html#onNavigationItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/widget/Adapter.html#getItemId(int)

@Override

public	boolean	onNavigationItemSelected(MenuItem	item)	{

			DrawerLayout	drawer	=	(DrawerLayout)	findViewById(R.id.drawer_layout);

			//	Handle	navigation	view	item	clicks	here.

			switch	(item.getItemId())	{

						case	R.id.nav_camera:

									//	Handle	the	camera	import	action	(for	now	display	a	toast).

									drawer.closeDrawer(GravityCompat.START);

									displayToast(getString(R.string.chose_camera));

									return	true;

						case	R.id.nav_gallery:

									//	Handle	the	gallery	action	(for	now	display	a	toast).

									drawer.closeDrawer(GravityCompat.START);

									displayToast(getString(R.string.chose_gallery));

									return	true;

						case	R.id.nav_slideshow:

									//	Handle	the	slideshow	action	(for	now	display	a	toast).

									drawer.closeDrawer(GravityCompat.START);

									displayToast(getString(R.string.chose_slideshow));

									return	true;

						case	R.id.nav_manage:

									//	Handle	the	tools	action	(for	now	display	a	toast).

									drawer.closeDrawer(GravityCompat.START);

									displayToast(getString(R.string.chose_tools));

									return	true;

						case	R.id.nav_share:

									//	Handle	the	share	action	(for	now	display	a	toast).

									drawer.closeDrawer(GravityCompat.START);

									displayToast(getString(R.string.chose_share));

									return	true;

						case	R.id.nav_send:

									//	Handle	the	send	action	(for	now	display	a	toast).

									drawer.closeDrawer(GravityCompat.START);

									displayToast(getString(R.string.chose_send));

									return	true;

						default:

									return	false;

			}

}

After	the	user	taps	a	navigation	drawer	selection	or	taps	outside	the	drawer,	the	DrawerLayout	closeDrawer()	method
closes	the	drawer.

Lists	and	carousels

Use	a	scrolling	list,	such	as	a	RecyclerView,	to	provide	navigation	targets	for	descendant	navigation.	Vertically	scrolling	lists
are	often	used	for	a	screen	that	lists	stories,	with	each	list	item	acting	as	a	button	to	each	story.	For	more	visual	or	media-
rich	content	items	such	as	photos	or	videos,	you	may	want	to	use	a	horizontally-scrolling	list	(also	known	as	a	carousel).
These	UI	elements	are	good	for	presenting	items	in	a	collection	(for	example,	a	list	of	news	stories).

You	learn	all	about	RecyclerView	in	the	next	chapter.

Master/detail	navigation	flow
In	a	master/detail	navigation	flow,	a	master	screen	contains	a	list	of	items,	and	a	detail	screen	shows	detailed	information
about	a	specific	item.	Descendant	navigation	is	usually	implemented	by	one	of	the	following:

Using	an	Intent	that	starts	an	activity	representing	the	detail	screen.	For	more	information	about	Intents,	see	Intents
and	Intent	Filters	in	the	Android	Developer	Guide.
When	adding	a	Settings	Activity,	you	can	extend	PreferenceActivity	to	create	a	two-pane	master/detail	layout	to
support	large	screens,	and	include	fragments	within	the	activity	to	replace	the	activity's	content	with	a	settings
fragment.	This	is	a	useful	pattern	if	you	have	multiple	groups	of	settings	and	need	to	support	tablet-sized	screens	as
well	as	smartphones.	You	learn	about	the	Settings	Activity	and	PreferenceActivity	in	a	subsequent	chapter.	For	more
information	about	using	fragments,	see	Fragments	in	the	Android	Developer	Guide.

4.3:	Screen	Navigation

192

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html#closeDrawer(int)
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/preference/PreferenceActivity.html
https://developer.android.com/guide/components/fragments.html

Smartphones	are	best	suited	for	displaying	one	screen	at	a	time—such	as	a	master	screen	(on	the	left	side	of	the	figure
below)	and	a	detail	screen	(on	the	right	side	of	the	figure	below).

On	the	other	hand,	tablet	displays,	especially	when	viewed	in	the	landscape	orientation,	are	best	suited	for	showing
multiple	content	panes	at	a	time:	the	master	on	the	left,	and	the	detail	to	the	right,	as	shown	below.

4.3:	Screen	Navigation

193

Options	menu	in	the	app	bar

The	app	bar	typically	contains	the	options	menu,	which	is	most	often	used	for	navigation	patterns	for	descendant
navigation.	It	may	also	contain	an	Up	icon	for	ancestral	navigation,	a	nav	icon	for	opening	a	navigation	drawer,	and	a	filter
icon	to	filter	page	views.	You	learned	how	to	set	up	the	options	menu	and	the	app	bar	in	a	previous	chapter.

Lateral	navigation	with	tabs	and	swipes
With	lateral	navigation,	you	enable	the	user	to	go	from	one	sibling	to	another	(at	the	same	level	in	a	multitier	hierarchy).	For
example,	if	your	app	provides	several	categories	of	stories	(such	as	Top	Stories,	Tech	News,	and	Cooking,	as	shown	in	the
figure	below),	you	would	want	to	provide	your	users	the	ability	to	navigate	from	one	category	to	the	next,	or	from	one	top
story	to	the	next,	without	having	to	navigate	back	up	to	the	parent	screen.

4.3:	Screen	Navigation

194

In	the	above	figure:

1.	 Lateral	navigation	from	one	category	screen	to	another
2.	 Lateral	navigation	from	one	story	screen	to	another

Another	example	of	lateral	navigation	is	the	ability	to	swipe	left	or	right	in	a	Gmail	conversation	to	view	a	newer	or	older
email	in	the	same	Inbox.

You	can	implement	lateral	navigation	with	tabs	that	represent	each	screen.	Tabs	appear	across	the	top	of	a	screen,	as
shown	on	the	left	side	of	the	above	figure,	providing	navigation	to	other	screens.	Tab	navigation	is	a	common	solution	for
lateral	navigation	from	one	child	screen	to	another	child	screen	that	is	a	sibling—in	the	same	position	in	the	hierarchy	and
sharing	the	same	parent	screen.

Tabs	are	most	appropriate	for	small	sets	(four	or	fewer)	of	sibling	screens.	You	can	combine	tabs	with	swipe	views,	so	that
the	user	can	swipe	across	from	one	screen	to	another	as	well	as	tap	a	tab.

Tabs	offer	two	benefits:

Since	there	is	a	single,	initially-selected	tab,	users	already	have	access	to	that	tab's	content	from	the	parent	screen
without	any	further	navigation.
Users	can	navigate	quickly	between	related	screens,	without	needing	to	first	revisit	the	parent.

Keep	in	mind	the	following	best	practices	when	using	tabs:

Tabs	are	usually	laid	out	horizontally.
Tabs	should	always	run	along	the	top	of	the	screen,	and	should	not	be	aligned	to	the	bottom	of	the	screen.
Tabs	should	be	persistent	across	related	screens.	Only	the	designated	content	region	should	change	when	tapping	a
tab,	and	tab	indicators	should	remain	available	at	all	times.
Switching	to	another	tab	should	not	be	treated	as	history.	For	example,	if	a	user	switches	from	tab	A	to	tab	B,	pressing
the	Up	button	in	the	app	bar	should	not	reselect	tab	A	but	should	instead	return	the	user	to	the	parent	screen.

The	key	steps	for	implementing	tabs	are:

1.	 Defining	the	tab	layout.	The	main	class	used	for	displaying	tabs	is	TabLayout.	It	provides	a	horizontal	layout	to	display
tabs.	You	can	show	the	tabs	below	the	app	bar.

2.	 Implementing	a	Fragment	for	each	tab	content	screen.	A	fragment	is	a	behavior	or	a	portion	of	user	interface	within	an
activity.	It's	like	a	mini-activity	within	the	main	activity,	with	its	own	own	lifecycle.	One	benefit	of	using	fragments	for	the
tab	content	is	that	you	can	isolate	the	code	for	managing	the	tab	content	in	the	fragment.	To	learn	about	fragments,
see	Fragments	in	the	API	Guide.

4.3:	Screen	Navigation

195

https://developer.android.com/reference/android/support/design/widget/TabLayout.html
https://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/guide/components/fragments.html

3.	 Adding	a	pager	adapter.	Use	the	PagerAdapter	class	to	populate	"pages"	(screens)	inside	of	a	ViewPager,	which	is	a
layout	manager	that	lets	the	user	flip	left	and	right	through	screens	of	data.	You	supply	an	implementation	of	a
PagerAdapter	to	generate	the	screens	that	the	view	shows.	ViewPager	is	most	often	used	in	conjunction	with
Fragment,	which	is	a	convenient	way	to	supply	and	manage	the	lifecycle	of	each	screen.

4.	 Creating	an	instance	of	the	tab	layout,	and	set	the	text	for	each	tab.
5.	 Using		PagerAdapter		to	manage	screen	("page")	views.	Each	screen	is	represented	by	its	own	fragment.
6.	 Setting	a	listener	to	determine	which	tab	is	tapped.

There	are	standard	adapters	for	using	fragments	with	the	ViewPager:

FragmentPagerAdapter:	Designed	for	navigating	between	sibling	screens	(pages)	representing	a	fixed,	small	number
of	screens.
FragmentStatePagerAdapter:	Designed	for	paging	across	a	collection	of	screens	(pages)	for	which	the	number	of
screens	is	undetermined.	It	destroys	fragments	as	the	user	navigates	to	other	screens,	minimizing	memory	usage.	The
app	for	this	practical	challenge	uses	FragmentStatePagerAdapter.

Defining	tab	layout
To	use	a	TabLayout,	you	can	design	the	main	activity's	layout	to	use	a		Toolbar		for	the	app	bar,	a		TabLayout		for	the	tabs
below	the	app	bar,	and	a		ViewPager		within	the	root	layout	to	switch	child	views.	The	layout	should	look	similar	to	the
following,	assuming	each	child	view	fills	the	screen:

<android.support.v7.widget.Toolbar

								android:id="@+id/toolbar"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_alignParentTop="true"

								android:background="?attr/colorPrimary"

								android:minHeight="?attr/actionBarSize"

								android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"

								app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>

				<android.support.design.widget.TabLayout

								android:id="@+id/tab_layout"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_below="@id/toolbar"

								android:background="?attr/colorPrimary"

								android:minHeight="?attr/actionBarSize"

								android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>

				<android.support.v4.view.ViewPager

								android:id="@+id/pager"

								android:layout_width="match_parent"

								android:layout_height="fill_parent"

								android:layout_below="@id/tab_layout"/>

For	each	child	view,	create	a	layout	file	such	as	tab_fragment1.xml,	tab_fragment2.xml,	tab_fragment3.xml,	and	so	on.

4.3:	Screen	Navigation

196

https://developer.android.com/reference/android/support/v4/view/PagerAdapter.html
https://developer.android.com/reference/android/support/v4/view/ViewPager.html
https://developer.android.com/reference/android/support/v4/view/PagerAdapter.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/support/v4/app/FragmentPagerAdapter.html
https://developer.android.com/reference/android/support/v4/app/FragmentStatePagerAdapter.html

4.3:	Screen	Navigation

197

Implementing	each	fragment

A	fragment	is	a	behavior	or	a	portion	of	user	interface	within	an	activity.	It's	like	a	mini-activity	within	the	main	activity,	with
its	own	own	lifecycle.	To	learn	about	fragments,	see	Fragments	in	the	API	Guide.

Add	a	class	for	each	fragment	(such	as	TabFragment1.java,	TabFragment2.java,	and	TabFragment3.java)	representing	a
screen	the	user	can	visit	by	clicking	a	tab.	Each	class	should	extend	Fragment	and	inflate	the	layout	associated	with	the
screen	(tab_fragment1	,		tab_fragment2	,	and		tab_fragment3).	For	example,	TabFragment1.java	looks	like	this:

public	class	TabFragment1	extends	Fragment	{

			@Override

			public	View	onCreateView(LayoutInflater	inflater,

																			ViewGroup	container,	Bundle	savedInstanceState)	{

						return	inflater.inflate(R.layout.tab_fragment1,	container,	false);

			}

}

Adding	a	pager	adapter

Add	a		PagerAdapter		that	extends	FragmentStatePagerAdapter	and:

1.	 Defines	the	number	of	tabs.
2.	 Uses	the	getItem()	method	of	the	Adapter	class	to	determine	which	tab	is	clicked.
3.	 Uses	a		switch	case		block	to	return	the	screen	(page)	to	show	based	on	which	tab	is	clicked.

public	class	PagerAdapter	extends	FragmentStatePagerAdapter	{

				int	mNumOfTabs;

				public	PagerAdapter(FragmentManager	fm,	int	NumOfTabs)	{

								super(fm);

								this.mNumOfTabs	=	NumOfTabs;

				}

				@Override

				public	Fragment	getItem(int	position)	{

								switch	(position)	{

												case	0:

																return	new	TabFragment1();

												case	1:

																return	new	TabFragment2();

												case	2:

																return	new	TabFragment3();

												default:

																return	null;

								}

				}

				@Override

				public	int	getCount()	{

								return	mNumOfTabs;

				}

}

Creating	an	instance	of	the	tab	layout

In	the		onCreate()		method	of	the	main	activity,	create	an	instance	of	the	tab	layout	from	the		tab_layout		element	in	the
layout,	and	set	the	text	for	each	tab	using	addTab():

4.3:	Screen	Navigation

198

http://developer.android.com/guide/components/fragments.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/support/v4/app/FragmentStatePagerAdapter.html
https://developer.android.com/reference/android/widget/Adapter.html#getItem(int)
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/support/design/widget/TabLayout.html#addTab(android.support.design.widget.TabLayout.Tab)

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			//	Create	an	instance	of	the	tab	layout	from	the	view.

			TabLayout	tabLayout	=	(TabLayout)	findViewById(R.id.tab_layout);

			//	Set	the	text	for	each	tab.

			tabLayout.addTab(tabLayout.newTab().setText("Top	Stories"));

			tabLayout.addTab(tabLayout.newTab().setText("Tech	News"));

			tabLayout.addTab(tabLayout.newTab().setText("Cooking"));

			//	Set	the	tabs	to	fill	the	entire	layout.

			tabLayout.setTabGravity(TabLayout.GRAVITY_FILL);

			//	Use	PagerAdapter	to	manage	page	views	in	fragments.

			...

}

Extract	string	resources	for	the	tab	text	set	by		setText()	:

	"Top	Stories"		to		tab_label1	
	"Tech	News"		to		tab_label2	
	"Cooking"		to		tab_label3	

Managing	screen	views	in	fragments	and	set	a	listener
Use		PagerAdapter		in	the	main	activity's		onCreate()		method	to	manage	screen	("page")	views	in	the	fragments.	Each
screen	is	represented	by	its	own	fragment.	You	also	need	to	set	a	listener	to	determine	which	tab	is	tapped.	The	following
code	should	appear	after	the	code	from	the	previous	section	in	the		onCreate()		method:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			//	Use	PagerAdapter	to	manage	page	views	in	fragments.

			//	Each	page	is	represented	by	its	own	fragment.

			//	This	is	another	example	of	the	adapter	pattern.

			final	ViewPager	viewPager	=	(ViewPager)	findViewById(R.id.pager);

			final	PagerAdapter	adapter	=	new	PagerAdapter

																(getSupportFragmentManager(),	tabLayout.getTabCount());

			viewPager.setAdapter(adapter);

			//	Setting	a	listener	for	clicks.

			viewPager.addOnPageChangeListener(new

																TabLayout.TabLayoutOnPageChangeListener(tabLayout));

			tabLayout.addOnTabSelectedListener(new	TabLayout.OnTabSelectedListener()	{

						@Override

						public	void	onTabSelected(TabLayout.Tab	tab)	{

									viewPager.setCurrentItem(tab.getPosition());

						}

						@Override

									public	void	onTabUnselected(TabLayout.Tab	tab)	{

						}

						@Override

									public	void	onTabReselected(TabLayout.Tab	tab)	{

						}

			});

}

Using	ViewPager	for	swipe	views	(horizontal	paging)
The	ViewPager	is	a	layout	manager	that	lets	the	user	flip	left	and	right	through	"pages"	(screens)	of	content.	ViewPager	is
most	often	used	in	conjunction	with	Fragment,	which	is	a	convenient	way	to	supply	and	manage	the	lifecycle	of	each
"page".	ViewPager	also	provides	the	ability	to	swipe	"pages"	horizontally.

4.3:	Screen	Navigation

199

https://developer.android.com/reference/android/support/v4/view/ViewPager.html
https://developer.android.com/reference/android/app/Fragment.html

In	the	previous	example,	you	used	a		ViewPager		within	the	root	layout	to	switch	child	screens.	This	provides	the	ability	for
the	user	to	swipe	from	one	child	screen	to	another.	Users	are	able	to	navigate	to	sibling	screens	by	touching	and	dragging
the	screen	horizontally	in	the	direction	of	the	desired	adjacent	screen.

Swipe	views	are	most	appropriate	where	there	is	some	similarity	in	content	type	among	sibling	pages,	and	when	the
number	of	siblings	is	relatively	small.	In	these	cases,	this	pattern	can	be	used	along	with	tabs	above	the	content	region	to
indicate	the	current	page	and	available	pages,	to	aid	discoverability	and	provide	more	context	to	the	user.

Tip:	It's	best	to	avoid	horizontal	paging	when	child	screens	contain	horizontal	panning	surfaces	(such	as	maps),	as	these
conflicting	interactions	may	deter	your	screen's	usability.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Using	the	App	Bar	and	Tabs	for	Navigation

Learn	more
Best	Practices	for	Interaction	and	Engagement

Designing	Effective	Navigation
Implementing	Effective	Navigation
Creating	Swipe	Views	with	Tabs
Creating	a	Navigation	Drawer
Providing	Up	Navigation
Implementing	Descendant	Navigation

Best	Practices	for	User	Interface
Design	-	Patterns	-	Navigation
Navigation	with	Back	and	Up
Action	Bar
Adding	the	Action	(App)	Bar	tutorial
Menus

4.3:	Screen	Navigation

200

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/43_pc_tab_navigation.html
http://developer.android.com/training/best-ux.html
http://developer.android.com/training/design-navigation/index.html
http://developer.android.com/training/implementing-navigation/index.html
https://developer.android.com/training/implementing-navigation/lateral.html
https://developer.android.com/training/implementing-navigation/nav-drawer.html
https://developer.android.com/training/implementing-navigation/ancestral.html
https://developer.android.com/training/implementing-navigation/descendant.html
http://developer.android.com/training/best-ui.html
https://www.google.com/design/spec/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/actionbar.html
http://developer.android.com/training/appbar/index.html
http://developer.android.com/guide/topics/ui/menus.html#PopupMenu

4.4:	RecyclerView
Contents:

RecyclerView	components
Data
RecyclerView
Item	Layout
Layout	Manager
Animations
Adapter
ViewHolder
Implementing	a	RecyclerView
1.	Add	the	dependency	to	app/build.gradle
2.	Add	a	RecyclerView	to	your	activity's	layout
3.	Create	the	layout	for	one	item
4.	Create	an	adapter	with	a	view	holder
5.	Implement	the	view	holder	class
6.	Create	the	RecyclerVew
Related	practical
Learn	more

When	you	display	a	large	number	of	items	in	a	scrollable	list,	most	items	are	not	visible.	For	example,	in	a	long	list	of	words
or	many	news	headlines,	the	user	only	sees	a	small	number	of	list	items	at	a	time.

4.4:	RecyclerView

201

4.4:	RecyclerView

202

Or	you	may	have	a	dataset	that	changes	as	the	user	interacts	with	it.	If	you	create	a	new	view	every	time	the	data	changes,
that's	also	a	lot	of	views,	even	for	a	small	dataset.

From	a	performance	perspective,	you	want	to	minimize	the	number	of	views	kept	around	at	any	given	point	(Memory),	and
the	number	of	views	you	have	to	create	(Time).	Both	of	these	goals	can	be	accomplished	by	creating	somewhat	more
views	than	the	user	can	see	on	the	screen,	and	cache	and	reuse	previously	created	views	with	different	data	as	they	scroll
in	and	out	of	view.	

The	RecyclerView	class	is	a	more	advanced	and	flexible	version	of	ListView.	It	is	a	container	for	displaying	large	data	sets
that	can	be	scrolled	very	efficiently	by	maintaining	a	limited	number	of	views.

Use	the	RecyclerView	widget	when	you	need	to	display	a	large	amount	of	scrollable	data,	or	data	collections	whose
elements	change	at	runtime	based	on	user	action	or	network	events.

RecyclerView	components

4.4:	RecyclerView

203

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/widget/ListView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

To	display	your	data	in	a	RecyclerView,	you	need	the	following	parts:

Data.	It	doesn't	matter	where	the	data	comes	from.	You	can	create	the	data	locally,	as	you	do	in	the	practical,	get	it
from	a	database	on	the	device	as	you	will	do	in	a	later	practical,	or	pull	it	from	the	cloud.
A	RecyclerView.	The	scrolling	list	that	contains	the	list	items.

An	instance	of	RecyclerView	as	defined	in	your	activity's	layout	file	to	act	as	the	container	for	the	views.

Layout	for	one	item	of	data.	All	list	items	look	the	same,	so	you	can	use	the	same	layout	for	all	of	them.	The	item
layout	has	to	be	created	separately	from	the	activity's	layout,	so	that	one	item	view	at	a	time	can	be	created	and	filled
with	data.
A	layout	manager.	The	layout	manager	handles	the	organization	(layout)	of	user	interface	components	in	a	view.	All
view	groups	have	layout	managers.	For	the	LinearLayout,	the	Android	system	handles	the	layout	for	you.
RecyclerView	requires	an	explicit	layout	manager	to	manage	the	arrangement	of	list	items	contained	within	it.	This
layout	could	be	vertical,	horizontal,	or	a	grid.

The	layout	manager	is	an	instance	of	Recyclerview.LayoutManager	to	organize	the	layout	of	the	items	in	the
RecyclerView

An	adapter.	The	adapter	connects	your	data	to	the	RecyclerView.	It	prepares	the	data	and	how	will	be	displayed	in	a
view	holder.	When	the	data	changes,	the	adapter	updates	the	contents	of	the	respective	list	item	view	in	the
RecyclerView.

And	an	adapter	is	an	extension	of	RecyclerView.Adapter.	The	adapter	uses	a	ViewHolder	to	hold	the	views	that
constitute	each	item	in	the	RecyclerView,	and	to	bind	the	data	to	be	displayed	into	the	views	that	display	it.

A	view	holder.	The	view	holder	extends	the	ViewHolder	class.	It	contains	the	view	information	for	displaying	one	item
from	the	item's	layout.

A	view	holder	used	by	the	adapter	to	supply	data,	which	is	an	extension	of	RecyclerView.ViewHolder

The	diagram	below	shows	the	relationship	between	these	compoments.	

Data
Any	displayable	data	can	be	shown	in	a	RecyclerView.

Text
Images
Icons

Data	can	come	from	any	source.

Created	by	the	app.	For	example,	scrambled	words	for	a	game.
From	a	local	database.	For	example,	a	list	of	contacts.
From	cloud	storage	or	the	internet.	For	example	news	headlines.

4.4:	RecyclerView

204

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.LayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html

RecyclerView
A	RecyclerView	is:

A	View	group	for	a	scrollable	container
Ideal	for	long	lists	of	similar	items
Uses	only	a	limited	number	of	views	that	are	re-used	when	they	go	off-screen.	This	saves	memory	and	makes	it	faster
to	update	list	items	as	the	user	scrolls	through	data,	because	it	is	not	necessary	to	create	a	new	view	for	every	item
that	appears.
In	general,	the	RecyclerView	keeps	as	many	item	views	as	fit	on	the	screen,	plus	a	few	extra	at	each	end	of	the	list	to
make	sure	that	scrolling	is	fast	and	smooth.

Item	Layout
The	layout	for	a	list	item	is	kept	in	a	separate	file	so	that	the	adapter	can	create	item	views	and	edit	their	contents
independently	from	the	layout	of	the	activity.

Layout	Manager
A	layout	manager	positions	item	views	inside	a	view	group,	such	as	the	RecyclerView	and	determines	when	to	reuse	item
views	that	are	no	longer	visible	to	the	user.	To	reuse	(or	recycle)	a	view,	a	layout	manager	may	ask	the	adapter	to	replace
the	contents	of	the	view	with	a	different	element	from	the	dataset.	Recycling	views	in	this	manner	improves	performance	by
avoiding	the	creation	of	unnecessary	views	or	performing	expensive	findViewById()	lookups.

RecyclerView	provides	these	built-in	layout	managers:

LinearLayoutManager	shows	items	in	a	vertical	or	horizontal	scrolling	list.
GridLayoutManager	shows	items	in	a	grid.
StaggeredGridLayoutManager	shows	items	in	a	staggered	grid.

To	create	a	custom	layout	manager,	extend	the	RecyclerView.LayoutManager	class.

Animations

Animations	for	adding	and	removing	items	are	enabled	by	default	in	RecyclerView.	To	customize	these	animations,	extend
the	RecyclerView.ItemAnimator	class	and	use	the	RecyclerView.setItemAnimator()	method.

Adapter
An	Adapter	helps	two	incompatible	interfaces	to	work	together.	In	the	RecyclerView,	the	adapter	connects	data	with	views.
It	acts	as	an	intermediary	between	the	data	and	the	view.	The	Adapter	receives	or	retrieves	the	data,	does	any	work
required	to	make	it	displayable	in	a	view,	and	places	the	data	in	a	view.

For	example,	the	adapter	may	receive	data	from	a	database	as	a	Cursor	object,	extract	the	the	word	and	its	definition,
convert	them	to	strings,	and	place	the	strings	in	an	item	view	that	has	two	text	views,	one	for	the	word	and	one	for	the
definition.	You	will	learn	more	about	cursors	in	a	later	chapter.

The	RecyclerView.Adapter	implements	a	view	holder,	and	must	override	the	following	callbacks:

	onCreateViewHolder()		inflates	an	item	view	and	returns	a	new	view	holder	that	contains	it.	This	method	is	called	when
the	RecyclerView	needs	a	new	view	holder	to	represent	and	item.
	onBindViewHolder()		sets	the	contents	of	an	item	at	a	given	position	in	the	RecyclerView.	This	is	called	by	the
RecyclerView,	for	example,	when	a	new	item	scrolls	into	view.
	getItemCount()		returns	the	total	number	of	items	in	the	data	set	held	by	the	adapter.

4.4:	RecyclerView

205

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/app/Activity.html#findViewById%28int%29
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/LinearLayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/GridLayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/StaggeredGridLayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.LayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ItemAnimator.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html#setItemAnimator%28android.support.v7.widget.RecyclerView.ItemAnimator%29
https://developer.android.com/reference/android/database/Cursor.html

View	holder
A	RecyclerView.ViewHolder	describes	an	item	view	and	metadata	about	its	place	within	the	RecyclerView.	Each	view
holder	holds	one	set	of	data.	The	adapter	adds	data	to	view	holders	for	the	layout	manager	to	display.

You	define	your	view	holder	layout	in	an	XML	resource	file.	It	can	contain	(almost)	any	type	of	view,	including	clickable
elements.

Implementing	a	Recycler	View
Implementing	a	RecyclerView	requires	the	following	steps:

1.	 Add	the	RecyclerView	dependency	to	the	app's	app/build.gradle	file.
2.	 Add	the	RecyclerView	to	the	activity's	layout
3.	 Create	a	layout	XML	file	for	one	item
4.	 Extend	RecyclerView.Adapter	and	implement	onCrateViewHolder	and	onBindViewHolder	methods.
5.	 Extend	RecyclerView.ViewHolder	to	create	a	view	holder	for	your	item	layout.	You	can	add	click	behavior	by	overriding

the	onClick	method.
6.	 In	your	activity,	In	the	onCreate	method,	create	a	RecyclerView	and	initialize	it	with	the	adapter	and	a	layout	manager.

1.	Add	the	dependency	to	app/build.gradle
Add	the	recycler	view	library	to	your	app/build.gradle	file	as	a	dependency.	Look	at	the	chapter	on	support	libraries	or	the
RecyclerView	practical,	if	you	need	detailed	instructions.

dependencies	{

				...

				compile	'com.android.support:recyclerview-v7:24.1.1'

				...

}

2.	Add	a	RecyclerView	to	your	activity's	layout
Add	the	RecyclerView	in	your	activity's	layout	file.

				<android.support.v7.widget.RecyclerView

								android:id="@+id/recyclerview"

								android:layout_width="match_parent"

								android:layout_height="match_parent">

				</android.support.v7.widget.RecyclerView>

Use	the	recycler	view	from	the	support	library	to	be	compatible	with	older	devices.	The	only	required	attributes	are	the	id,
along	with	the	width	and	height.	Customize	the	items,	not	this	view	group.

3.	Create	the	layout	for	one	item
Create	an	XML	resource	file	and	specify	the	layout	of	one	item.	This	will	be	used	by	the	adapter	to	create	the	view	holder.

4.4:	RecyclerView

206

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:orientation="vertical"

				android:padding="6dp">

				<TextView

								android:id="@+id/word"

								style="@style/word_title"	/>

</LinearLayout>

The	text	view	has	a		@style		element.	A	style	is	a	collection	of	properties	that	specifies	the	look	of	a	view.	You	can	use
styles	to	share	display	attributes	with	multiple	views.	An	easy	way	to	create	a	style	is	to	extract	the	style	of	a	UI	element
that	you	already	created.	For	example,	after	styling	a	TextView,	Right-click	>	Refactor	>	Extract	>	Style	on	the	element
and	follow	the	dialog	prompts.	More	details	on	styles	are	in	the	practical	and	in	a	later	chapter.

4.	Create	an	adapter	with	a	view	holder
Extend	RecyclerView.Adapter	and	implement	the	onCrateViewHolder	and	onBindViewHolder	methods.

Create	a	new	Java	class	with	the	following	signature:

public	class	WordListAdapter	extends	RecyclerView.Adapter<WordListAdapter.WordViewHolder>	{}

In	the	constructor,	get	an	inflater	from	the	current	contex,	and	your	data.

				public	WordListAdapter(Context	context,	LinkedList<String>	wordList)	{

								mInflater	=	LayoutInflater.from(context);

								this.mWordList	=	wordList;

				}

For	this	adapter,	you	have	to	implement	3	methods.

onCreateViewHolder()	creates	a	view	and	returns	it.

@Override

public	WordViewHolder	onCreateViewHolder(ViewGroup	parent,	int	viewType){

				//	Inflate	an	item	view.

				View	mItemView	=	mInflater.inflate(R.layout.wordlist_item,	parent,	false);

				return	new	WordViewHolder(mItemView,	this);

}

onBindViewHolder()	associates	the	data	with	the	view	holder	for	a	given	position	in	the	RecyclerView.

@Override

public	void	onBindViewHolder(WordViewHolder	holder,	int	position)	{

				//	Retrieve	the	data	for	that	position

				String	mCurrent	=	mWordList.get(position);

				//	Add	the	data	to	the	view

				holder.wordItemView.setText(mCurrent);

}

getItemCount()	returns	to	number	of	data	items	available	for	displaying.

	@Override

public	int	getItemCount()	{

				return	mWordList.size();

}

4.4:	RecyclerView

207

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html

5.	Implement	the	view	holder	class
Extend	RecyclerView.ViewHolder	to	create	a	view	holder	for	your	item	layout.	You	can	add	click	behavior	by	overriding	the
onClick	method.

This	class	is	usually	defined	as	an	inner	class	to	the	adapter	and	extends	RecyclerView.ViewHolder.

class	WordViewHolder	extends	RecyclerView.ViewHolder	{}

If	you	want	to	add	click	handling,	you	need	to	implement	a	click	listener.	One	way	to	do	this	is	to	have	the	view	holder
implement	the	click	listener	methods.

//	Extend	the	signature	of	WordVewHolder	to	implement	a	click	listener.

class	WordViewHolder	extends	RecyclerView.ViewHolder	implements	View.OnClickListener	{}

In	its	constructor,	the	view	holder	has	to	inflate	its	layout,	associate	with	its	adapter,	and,	if	applicable,	set	a	click	listener.

public	WordViewHolder(View	itemView,	WordListAdapter	adapter)	{

				super(itemView);

				wordItemView	=	(TextView)	itemView.findViewById(R.id.word);

				this.mAdapter	=	adapter;

				itemView.setOnClickListener(this);

}

And,	if	you	implementing	onClickListener,	you	also	have	to	implement	onClick().

@Override

public	void	onClick(View	v)	{

				wordItemView.setText	("Clicked!	"+	wordItemView.getText());

}

Note	that	to	attach	click	listeners	to	other	elements	of	the	view	holder,	you	do	that	dynamically	in	onBindViewHolder.	(You
will	do	this	a	later	practical,	when	you	will	be	extending	the	recycler	view	code	from	the	practical.)

6.	Create	the	RecyclerView
Finally,	to	tie	it	all	together,	in	your	activity's	onCreate()	method:

1.	 Get	a	handle	to	the	RecyclerView.

mRecyclerView	=	(RecyclerView)	findViewById(R.id.recyclerview);

2.	 Create	an	adapter	and	supply	the	data	to	be	displayed.

mAdapter	=	new	WordListAdapter(this,	mWordList);

3.	 Connect	the	adapter	with	the	recycler	view.

mRecyclerView.setAdapter(mAdapter);

4.	 Give	the	recycler	view	a	default	layout	manager.

mRecyclerView.setLayoutManager(new	LinearLayoutManager(this));

RecyclerView	is	an	efficient	way	for	displaying	scrolling	list	data.	It	uses	the	adapter	pattern	to	connect	data	with	list	item
views.	To	implement	a	RecyclerView	you	need	to	create	an	adapter	and	a	view	holder,	and	the	methods	that	take	the	data
and	add	it	to	the	list	items.

4.4:	RecyclerView

208

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Create	a	RecyclerView

Learn	more
RecyclerView
RecyclerView	class
RecyclerView.Adapter	class
RecyclerView.ViewHolder	class
RecyclerView.LayoutManager	class

4.4:	RecyclerView

209

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/44_p_create_a_recycler_view.html
https://developer.android.com/training/material/lists-cards.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.LayoutManager.html

5.1:	Drawables,	Styles,	and	Themes

Table	of	Contents:
Introduction
Drawables
Images
Styles
Themes
Related	practical
Learn	more

In	this	chapter	you	learn	how	to	use	drawables,	which	are	compiled	images	that	you	can	use	in	your	app.	Android	provides
classes	and	resources	to	help	you	include	rich	images	in	your	application	with	a	minimal	impact	to	your	app's	performance.

You	also	learn	how	to	use	styles	and	themes	to	provide	a	consistent	appearance	to	all	the	elements	in	your	app	while
reducing	the	amount	of	code.

Drawables
A	drawable	is	a	graphic	that	can	be	drawn	to	the	screen.	You	retrieve	drawables	using	APIs	such	as		getDrawable(int)		,
and	you	apply	a	drawable	to	an	XML	resource	using	attributes	such	as		android:drawable		and		android:icon	.

Android	includes	several	types	of	drawables,	most	of	which	are	covered	in	this	chapter.

Covered	in	this	chapter:

Image	files
Nine-patch	files
Layer	lists
Shape	drawables
State	lists
Level	lists
Transition	drawables
Vector	drawables

Not	covered	in	this	chapter:

Scale	drawables
Inset	drawables
Clip	drawables

Using	drawables
To	display	a	drawable,	use	the		ImageView		class	to	create	a	View.	In	the		<ImageView>		element	in	your	XML	file,	define	how
the	drawable	is	displayed	and	where	the	drawable	file	is	located.	For	example,	this		ImageView		displays	an	image	called
"birthdaycake.png":

<ImageView

						android:id="@+id/tiles"

						android:layout_width="wrap_content"

						android:layout_height="wrap_content"

						android:src="@drawable/birthdaycake"	/>

About	the		<ImageView>		attributes:

The		android:id		attribute	sets	a	shortcut	name	that	you	use	to	call	the	image	later.
The		android:layout_width		and		android:layout_height		attributes	specify	the	size	of	the	View.	In	this	example	the
height	and	width	are	set	to		wrap_content	,	which	means	the	View	is	only	big	enough	to	enclose	the	image	within	it,
plus	padding.
The		android:src		attribute	gives	the	location	where	this	image	is	stored.	If	you	have	versions	of	the	image	that	are

5.1:	Drawables,	Styles,	and	Themes

210

https://developer.android.com/reference/android/content/res/Resources.html#getDrawable(int,%20android.content.res.Resources.Theme)
https://developer.android.com/reference/android/widget/ImageView.html

appropriate	for	different	screen	resolutions,	store	them	in	folders	named	res/drawable-[density]/.	For	example,	store	a
version	of	birthdaycake.png	appropriate	for	hdpi	screens	in	res/drawable-hdpi/birthdaycake.png.	For	more	information,
see	the	multiple-screens	guide.
	<ImageView>		also	has	attributes	that	you	can	use	to	crop	your	image	if	it	is	too	large	or	has	a	different	aspect	ratio	than
the	layout	or	the	View.	For	complete	details,	see	the		ImageView		class	documentation.

To	represent	a	drawable	in	your	app,	use	the		Drawable		class	or	one	of	its	subclasses.	For	example,	this	code	retrieves	the
birthdaycake.png	image	as	a		Drawable	:

Resources	res	=	getResources();

Drawable	drawable	=	res.getDrawable(R.drawable.birthdaycake);

Image	files

An	image	file	is	a	generic	bitmap	file.	Android	supports	image	files	in	several	formats:	WebP	(preferred),	PNG	(preferred),
and	JPG	(acceptable).	GIF	and	BMP	formats	are	supported,	but	discouraged.

The	WebP	format	is	fully	supported	from	Android	4.2.	WebP	compresses	better	than	other	formats	for	lossless	and	lossy
compression,	potentially	resulting	in	images	more	than	25%	smaller	than	JPEG	formats.	You	can	convert	existing	PNG	and
JPEG	images	into	WebP	format	before	upload.	For	more	about	WebP,	see	the	WebP	documentation.

Store	image	files	in	the	res/drawable	folder.	Use	them	with	the		android:src		attribute	for	an		ImageView		and	its
descendants,	or	to	create	a	BitmapDrawable	class	in	Java	code.

Be	aware	that	images	look	different	on	screens	with	different	pixel	densities	and	aspect	ratios.	For	information	on
supporting	different	screen	sizes,	see	Speeding	up	your	app,	below,	and	the	screen	sizes	guide.

Note:	Always	use	appropriately	sized	images,	because	images	can	use	up	a	lot	of	disk	space	and	affect	your	app's
performance.

Nine-patch	files

A	9-patch	is	a	PNG	image	in	which	you	define	stretchable	regions.	Use	a	9-patch	as	the	background	image	for	a	View	to
make	sure	the	View	looks	correct	for	different	screen	sizes	and	orientations.

For	example,	in	a	View	that	has		layout_width		set	to		"wrap_content"	,	the	View	stays	big	enough	to	enclose	its	content
(plus	padding).	If	you	use	a	normal	PNG	image	as	the	background	image	for	the	View,	the	image	might	be	too	small	for	the
for	the	View	on	some	devices,	because	the	View	stretches	to	accommodate	the	content	inside	it.	If	you	use	a	9-patch
image	instead,	the	9-patch	stretches	as	the	View	stretches.

Android's	standard	Button	widget	is	an	example	of	a	View	that	uses	a	9-patch	as	its	background	image.	The	9-patch
stretches	to	accommodate	the	text	or	image	inside	the	button.

Save	9-patch	files	with	a	.9.png	extension	and	store	them	in	the	res/drawable	folder.	Use	them	with	the		android:src	
attribute	for	an		ImageView		and	its	descendants,	or	to	create	a		NinePatchDrawable		class	in	Java	code.

To	create	a	9-patch,	use	the	Draw	9-Patch	tool	in	Android	Studio.	The	tool	lets	you	start	with	a	regular	PNG	and	define	a	1-
pixel	border	around	the	image	in	places	where	it's	okay	for	the	Android	system	to	stretch	the	image	if	needed.	To	use	the
tool:

1.	 Put	a	PNG	file	into	the	res/drawable	folder.	(To	do	this,	copy	the	image	file	into	the	app/src/main/res/drawable	folder	of
your	project.)

2.	 In	Android	Studio,	right-click	the	file	and	choose	Create	9-Patch	file.	Android	Studio	saves	the	file	with	a	.9.png
extension.

3.	 In	Android	Studio,	double-click	the	.9.png	file	to	open	the	editor.
4.	 Specify	which	regions	of	the	image	are	okay	to	stretch.

5.1:	Drawables,	Styles,	and	Themes

211

https://developer.android.com/guide/practices/screens_support.html#support
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/graphics/drawable/Drawable.html
https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/#webp_converter_download_stylefont-weight_bold
https://developers.google.com/speed/webp/faq
https://developer.android.com/reference/android/graphics/drawable/BitmapDrawable.html
https://developer.android.com/training/multiscreen/screensizes.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/graphics/drawable/NinePatchDrawable.html
https://developer.android.com/studio/write/draw9patch.html

#

1.	 Border	to	indicate	which	regions	are	okay	to	stretch	for	width	(horizontally).

For	example,	in	a	View	that	is	wider	than	the	image,	the	green	stripes	on	the	left-	and	right-hand	sides	of	this	9-patch
can	be	stretched	to	fill	the	View.	Places	that	can	stretch	are	marked	with	black.	Click	to	turn	pixels	black.

2.	 Border	to	indicate	regions	that	are	okay	to	stretch	for	height	(vertically).	For	example,	in	a	View	that	is	taller	then	the
image,	the	green	stripes	on	the	top	and	bottom	of	this	9-patch	can	be	stretched	to	fill	the	View.

3.	 Turn	off	pixels	by	shift-clicking	(ctrl-click	on	Mac).
4.	 Stretchable	area.
5.	 Not	stretchable.
6.	 Check	Show	patches	to	preview	the	stretchable	patches	in	the	drawing	area.
7.	 Previews	of	stretched	image.

Tip:	Make	sure	that	stretchable	regions	are	at	least	2x2	pixels	in	size.	Otherwise,	they	may	disappear	when	the	image
is	scaled	down.

For	a	more	detailed	discussion	about	how	to	create	a	9-patch	file	with	stretchable	regions,	see	the	9-patch	guide.

Layer	list	drawables

In	Android	you	can	build	up	an	image	by	layering	other	images	together,	just	as	you	can	in	Gimp	and	other	image-
manipulation	programs.	Each	layer	is	represented	by	an	individual	drawable.	The	drawables	that	make	up	a	single	image
are	organized	and	managed	in	a		<layer-list>		element	in	XML.	Within	the		<layer-list>	,	each	drawable	is	represented
by	an		<item>		element.

Layers	are	drawn	on	top	of	each	other	in	the	order	defined	in	the	XML	file,	which	means	that	the	last	drawable	in	the	list	is
drawn	on	top.	For	example,	this	layer	list	drawable	is	made	up	of	three	drawables	superimposed	on	each	other:	

5.1:	Drawables,	Styles,	and	Themes

212

https://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch

In	the	following	XML,	which	defines	this	layer	list,	the		android_blue		image	is	defined	last,	so	it's	drawn	last	and	shown	on
top:

<?xml	version="1.0"	encoding="utf-8"?>

<layer-list	xmlns:android="http://schemas.android.com/apk/res/android">

				<item>

						<bitmap	android:src="@drawable/android_red"

								android:gravity="center"	/>

				</item>

				<item	android:top="10dp"	android:left="10dp">

						<bitmap	android:src="@drawable/android_green"

								android:gravity="center"	/>

				</item>

				<item	android:top="20dp"	android:left="20dp">

						<bitmap	android:src="@drawable/android_blue"

								android:gravity="center"	/>

				</item>

</layer-list>

A		LayerDrawable		is	a	drawable	object	that	manages	an	array	of	other	drawables.	For	more	information	about	how	to	use	a
layer	list	drawable,	see	the	layer	list	guide.

Shape	drawables
A	shape	drawable	is	a	rectangle,	oval,	line,	or	ring	that	you	define	in	XML.	You	specify	the	size	and	style	of	the	shape	using
XML	attributes.

For	example,	this	XML	file	creates	a	rectangle	with	rounded	corners	and	a	color	gradient.	The	rectangle's	fill	color	shifts
from	white	(#000000)	in	the	lower	left	corner	to	blue	(#0000dd)		in	the	upper	right	corner.	The		angle		attribute	determines
how	the	gradient	is	tilted:

<?xml	version="1.0"	encoding="utf-8"?>

<shape	xmlns:android="http://schemas.android.com/apk/res/android"

				android:shape="rectangle">

				<corners	android:radius="8dp"	/>

				<gradient

								android:startColor="#000000"

								android:endColor="#0000dd"

								android:angle="45"/>

				<padding	android:left="7dp"

								android:top="7dp"

								android:right="7dp"

								android:bottom="7dp"	/>

</shape>

Assuming	that	the	shape	drawable	XML	file	is	saved	at	res/drawable/gradient_box.xml,	the	following	layout	XML	applies	the
shape	drawable	as	the	background	to	a	View:

<TextView

				android:background="@drawable/gradient_box"

				android:layout_height="wrap_content"

				android:layout_width="wrap_content"	/>

5.1:	Drawables,	Styles,	and	Themes

213

https://developer.android.com/reference/android/graphics/drawable/LayerDrawable.html
https://developer.android.com/guide/topics/resources/drawable-resource.html#LayerList

The	following	code	shows	how	to	programmatically	get	the	shape	drawable	and	use	it	as	the	background	for	a	View,	as	an
alternative	to	defining	the	background	attribute	in	XML:

Resources	res	=	getResources();

Drawable	shape	=	res.	getDrawable(R.drawable.gradient_box);

TextView	tv	=	(TextView)findViewByID(R.id.textview);

tv.setBackground(shape);

You	can	set	other	attributes	for	a	shape	drawable.	The	complete	syntax	is	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<shape

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:shape=["rectangle"	|	"oval"	|	"line"	|	"ring"]	>

				<!--	If	it's	a	line,	the	stroke	element	is	required.	-->

				<corners

								android:radius="integer"

								android:topLeftRadius="integer"

								android:topRightRadius="integer"

								android:bottomLeftRadius="integer"

								android:bottomRightRadius="integer"	/>

				<gradient

								android:angle="integer"

								<!--	The	angle	must	be	0	or	a	multiple	of	45	-->

								android:centerX="float"

								android:centerY="float"

								android:centerColor="integer"

								android:endColor="color"

								android:gradientRadius="integer"

								android:startColor="color"

								android:type=["linear"	|	"radial"	|	"sweep"]

								android:useLevel=["true"	|	"false"]	/>

				<padding

								android:left="integer"

								android:top="integer"

								android:right="integer"

								android:bottom="integer"	/>

				<size

								android:width="integer"

								android:height="integer"	/>

				<solid

								android:color="color"	/>

				<stroke

								android:width="integer"

								android:color="color"

								android:dashWidth="integer"

								android:dashGap="integer"	/>

</shape>

For	details	about	these	attributes,	see	the	shape	drawable	reference.

State	list	drawables

5.1:	Drawables,	Styles,	and	Themes

214

https://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

A		StateListDrawable		is	a	drawable	object	that	uses	a	different	image	to	represent	the	same	object,	depending	on	what
state	the	object	is	in.	For	example,	a	Button	widget	can	exist	in	one	of	several	states	(pressed,	focused	on,	hovered	over,	or
none	of	these).	Using	a	state	list	drawable,	you	can	provide	a	different	background	image	for	each	state.

You	describe	the	state	list	in	an	XML	file.	Each	graphic	is	represented	by	an		<item>		element	inside	a	single		<selector>	
element.	Each		<item>		uses	a		state_		attribute	to	indicate	the	situation	in	which	the	graphic	is	used.

During	each	state	change,	Android	traverses	the	state	list	from	top	to	bottom.	The	first	item	that	matches	the	current	state
is	used,	which	means	that	the	selection	is	not	based	on	the	"best	match,"	but	is	simply	the	first	item	that	meets	the
minimum	criteria	of	the	state.

The	state	list	in	the	following	example	defines	which	image	is	shown	for	a	button	when	the	button	is	in	different	states.
When	the	button	is	pressed—that	is,	when		state_pressed="true"	—the	app	shows	an	image	named	button_pressed.	When
the	button	is	in	focus	(state_focused="true"),	or	when	the	button	is	being	hovered	over	(state_hovered="true"),	the	app
shows	different	buttons.

<?xml	version="1.0"	encoding="utf-8"?>

<selector	xmlns:android="http://schemas.android.com/apk/res/android">

				<item	android:state_pressed="true"

										android:drawable="@drawable/button_pressed"	/>	<!--	pressed	-->

				<item	android:state_focused="true"

										android:drawable="@drawable/button_focused"	/>	<!--	focused	-->

				<item	android:state_hovered="true"

										android:drawable="@drawable/button_focused"	/>	<!--	hovered	-->

				<item	android:drawable="@drawable/button_normal"	/>	<!--	default	-->

</selector>

Other	available	states	include		android:state_selected,			android:state_checkable,	android:state_checked	,	and	others.	For
details	about	all	the	options,	see	the	state	list	guide.

Level	list	drawables
A	level	list	drawable	defines	alternate	drawables,	each	assigned	a	maximum	numerical	value.	To	select	which	drawable	to
use,	call	the		setLevel()		method,	passing	in	an	integer	that	is	matched	against	the	maximum	level	integer	defined	in	XML.
The	resource	with	the	lowest	maximum	level	greater	than	or	equal	to	the	integer	passed	into		setLevel()		is	selected.

For	example,	the	following	XML	defines	a	level	list	that	includes	two	alternate	drawables,		status_off		and		status_on	:

<?xml	version="1.0"	encoding="utf-8"?>

<level-list	xmlns:android="http://schemas.android.com/apk/res/android"	>

				<item

								android:drawable="@drawable/status_off"

								android:maxLevel="0"	/>

				<item

								android:drawable="@drawable/status_on"

								android:maxLevel="1"	/>

</level-list>

To	select	the		status_off		drawable,	call		setLevel(0)	.	To	select	the		status_on		drawable,	call		setLevel(1)	.

An	example	use	of	a		LevelListDrawable		is	a	battery	level	indicator	icon	that	uses	different	images	to	indicate	different
current	battery	levels.

Transition	drawables

A		TransitionDrawable		is	a	drawable	that	cross-fades	between	two	other	drawables.	To	define	a	transition	drawable	in	XML,
use	the		<transition>		element.	Each	drawable	is	represented	by	an		<item>		element	inside	the		<transition>		element.
No	more	than	two		<item>		elements	are	supported.

For	example,	this	drawable	cross-fades	between	an	"on"	state	and	an	"off"	state	drawable:

5.1:	Drawables,	Styles,	and	Themes

215

https://developer.android.com/reference/android/graphics/drawable/StateListDrawable.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/guide/topics/resources/drawable-resource.html#StateList
https://developer.android.com/reference/android/graphics/drawable/LevelListDrawable.html
https://developer.android.com/reference/android/graphics/drawable/TransitionDrawable.html

<transition	xmlns:android="http://schemas.android.com/apk/res/android">

				<item	android:drawable="@drawable/on"	/>

				<item	android:drawable="@drawable/off"	/>

</transition>

To	transition	forward,	meaning	to	shift	from	the	first	drawable	to	the	second,	call		startTransition()	.	To	transition	in	the
other	direction,	call		reverseTransition()	.	Each	of	these	methods	takes	an	argument	of	type		int	,	representing	the
number	of	milliseconds	for	the	transition.

Vector	drawables

In	Android	5.0	(API	Level	21)	and	above,	you	can	define	vector	drawables,	which	are	images	that	are	defined	by	a	path.
Vector	drawables	scale	without	losing	definition.	Most	vector	drawables	use	SVG	files,	which	are	plain	text	files	or
compressed	binary	files	that	include	two-dimensional	coordinates	for	how	the	image	is	drawn	on	the	screen.

Because	SVG	files	are	text,	they	are	more	space	efficient	than	most	other	image	files.	Also,	you	only	need	one	file	for	a
vector	image	instead	of	a	file	for	each	screen	density,	as	is	the	case	for	bitmap	images.

To	bring	an	existing	vector	image	or	a	Material	Design	icon	into	your	Android	Studio	project	as	a	vector	drawable:

1.	 Right-click	on	the	res/drawable	folder.
2.	 Select	New	>	Vector	Asset.	The	Vector	Asset	Studio	opens	and	guides	you	through	the	process.

To	create	a	vector	image,	define	the	details	of	the	shape	inside	a		<vector>		XML	element.	For	example,	the	following	code
defines	the	shape	of	a	heart	and	fills	it	with	a	red	color	(#f00):

<vector	xmlns:android="http://schemas.android.com/apk/res/android"

				<!--	intrinsic	size	of	the	drawable	-->

				android:height="256dp"

				android:width="256dp"

				<!--	size	of	the	virtual	canvas	-->

				android:viewportWidth="32"

				android:viewportHeight="32">

		<!--	draw	a	path	-->

		<path	android:fillColor="#f00"

						android:pathData="M20.5,9.5

																								c-1.955,0,-3.83,1.268,-4.5,3

																								c-0.67,-1.732,-2.547,-3,-4.5,-3

																								C8.957,9.5,7,11.432,7,14

																								c0,3.53,3.793,6.257,9,11.5

																								c5.207,-5.242,9,-7.97,9,-11.5

																								C25,11.432,23.043,9.5,20.5,9.5z"	/>

</vector>

Android	Studio	shows	a	preview	of	vector	drawables,	for	example,	here's	the	result	of	creating	the	XML	file	described
above:	

5.1:	Drawables,	Styles,	and	Themes

216

https://developer.android.com/reference/android/graphics/drawable/TransitionDrawable.html#startTransition(int)
https://developer.android.com/reference/android/graphics/drawable/TransitionDrawable.html#reverseTransition(int)

If	you	already	have	an	image	in	SVG	format,	there	are	several	ways	to	get	the	image's		pathData		information:

In	Android	Studio,	right-click	on	the	drawable	folder	and	select	New	>	Vector	Asset	to	open	the	Vector	Asset	Studio
tool.	Use	the	tool	to	import	a	local	SVG	file.
Use	a	file-conversion	tool	such	as	svg2android.
Open	the	image	in	a	text	editor,	or	if	you're	viewing	the	image	in	a	browser,	view	the	page	source.	Look	for	the		d=	
information,	which	is	equivalent	to	the		pathData		in	your	XML.

Vector	images	are	represented	in	Android	as		VectorDrawable		objects.	For	details	about	the		pathData		syntax,	see	the	SVG
Path	reference.	To	learn	how	to	animate	the	properties	of	vector	drawables,	see	Animate	Vector	Drawables.

Images
Images,	from	launcher	icons	to	banner	images,	are	used	in	many	ways	in	Android.	Each	use	case	has	different
requirements	for	image	resolution,	scalability	and	simplicity.	In	this	section	you	learn	about	the	different	ways	to	generate
images	and	include	them	in	your	app.

Creating	icons
Every	app	requires	at	least	a	launcher	icon,	and	apps	often	include	icons	for	action	bar	actions,	notifications,	and	other	use
cases.

There	are	two	approaches	to	creating	icons:

Create	a	set	of	image	files	of	the	same	icon	in	different	resolutions	and	sizes	so	that	the	icon	looks	the	same	across
devices	with	different	screen	densities.	You	can	use	Image	Asset	Studio	to	do	this.
Use	vector	drawables,	which	scale	automatically	without	the	image	becoming	pixelated	or	blurry.	You	can	use	Vector
Asset	Studio	to	do	this.

Image	Asset	Studio
Android	Studio	includes	a	tool	called	Image	Asset	Studio	that	helps	you	generate	your	own	app	icons	from	Material	Design
icons,	custom	images,	and	text	strings.	It	generates	a	set	of	icons	at	the	appropriate	resolution	for	each	generalized	screen
density	that	your	app	supports.	Image	Asset	Studio	places	the	newly	generated	icons	in	density-specific	folders	under	the
res/	folder	in	your	project.	At	runtime,	Android	uses	the	appropriate	resource	based	on	the	screen	density	of	the	device
your	app	is	running	on.

Image	Asset	Studio	helps	you	generate	the	following	icon	types:

Launcher	icons
Action	bar	and	tab	icons
Notification	icons

5.1:	Drawables,	Styles,	and	Themes

217

http://inloop.github.io/svg2android/
https://developer.android.com/reference/android/graphics/drawable/VectorDrawable.html
http://www.w3.org/TR/SVG11/paths.html#PathData
https://developer.android.com/training/material/animations.html#AnimVector
https://developer.android.com/training/appbar/actions.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://design.google.com/icons/
https://developer.android.com/guide/practices/screens_support.html#range

To	use	Image	Asset	Studio,	right-click	on	the	res/	folder	in	Android	Studio	and	select	New	>	Image	Asset.	The	Configure
Asset	Studio	wizard	opens	and	guides	you	through	the	process.	

For	more	about	Image	Asset	Studio,	see	the	Image	Asset	Studio	guide.

Vector	Asset	Studio

Starting	with	API	21,	you	can	use	vector	drawables	instead	of	image	files	for	your	icons.

Advantages	of	using	vector	drawables	as	icons:

Vector	drawables	can	reduce	your	APK	file	size	dramatically,	because	you	don't	have	to	include	multiple	versions	of
each	icon	image.	You	can	use	one	vector	image	to	scale	seamlessly	to	any	resolution.
Users	might	be	more	likely	to	download	an	app	that	has	smaller	files	and	a	smaller	package	size.

Disadvantages	of	using	vector	drawables	as	icons:

A	vector	drawable	can	include	only	a	limited	amount	of	detail.	Vector	drawables	are	mostly	used	for	less	detailed	icons
such	as	the	Material	Design	icons.	Icons	with	more	detail	usually	need	image	files.
Vector	drawables	are	not	supported	on	devices	running	API	level	20	or	below.

To	use	vector	drawables	on	devices	running	API	level	20	or	below,	you	have	to	decide	between	two	methods	of	backward-
compatibility:

5.1:	Drawables,	Styles,	and	Themes

218

https://developer.android.com/studio/write/image-asset-studio.html#access
https://design.google.com/icons/

By	default,	at	build	time	the	system	creates	bitmap	versions	of	your	vector	drawables	in	different	resolutions.	This
allows	the	icons	to	run	on	devices	that	aren't	able	to	draw	vector	drawables.
The		VectorDrawableCompat		class	in	the	Android	Support	Library	allows	you	to	support	vector	drawables	in	Android	2.1
(API	level	7)	and	higher.

Vector	Asset	Studio	is	a	tool	that	helps	you	add	Material	Design	icons	and	vector	drawables	to	your	Android	project.	To	use
it,	right-click	on	the	res/	folder	in	Android	Studio	and	select	New	>	Vector	Asset.	The	Configure	Asset	Studio	wizard	opens
and	guides	you	through	the	process.	

For	more	information	on	using	the	Vector	Asset	Studio	and	supporting	backward	compatibility,	refer	to	the	Vector	Asset
Studio	guide.

Creating	other	images
Banner	images,	user	profile	pictures,	and	other	images	come	in	all	shapes	and	sizes.	In	many	cases	they	are	larger	than
they	need	to	be	for	a	typical	application	user	interface	(UI).	For	example,	the	system	Gallery	app	displays	photos	taken
using	an	Android	device's	camera,	and	these	photos	are	typically	much	higher	resolution	than	the	screen	density	of	the
device.	Android	devices	have	finite	memory,	so	ideally,	you	want	to	load	only	a	lower	resolution	version	of	a	photo	in
memory.	The	lower	resolution	version	should	match	the	size	of	the	UI	component	that	displays	it.	An	image	with	a	higher
resolution	doesn't	provide	any	visible	benefit,	but	still	takes	up	precious	memory	and	adds	additional	performance	overhead
due	to	additional	on-the-fly	scaling.

You	can	load	resized	images	manually,	but	several	third	party	libraries	have	been	created	to	help	with	loading,	scaling	and
caching	images.

5.1:	Drawables,	Styles,	and	Themes

219

https://developer.android.com/reference/android/support/graphics/drawable/VectorDrawableCompat.html
https://developer.android.com/studio/write/vector-asset-studio.html#running
https://developer.android.com/training/displaying-bitmaps/load-bitmap.html

Using	image-loading	libraries

Image-loading	libraries	like	Glide	and	Picasso	can	handle	image	sizing,	caching,	and	display.	These	third-party	libraries	are
optimized	for	mobile,	and	they	are	well-documented.

Glide	supports	fetching,	decoding,	and	displaying	video	stills,	images,	and	animated	GIFs.	You	can	use	Glide	to	load
images	from	Web	APIs,	as	well	as	ones	located	in	your	resource	files.	Glide	includes	features	such	as	loading	placeholder
images	(for	loading	more	detailed	images),	cross-fade	animations,	and	automatic	caching.

To	use	Glide:

1.	 Download	the	library.
2.	 Include	the	dependency	in	your	app-level	build.gradle	file,	replacing		n.n.n		with	the	latest	version	of	Glide:

	compile	'com.github.bumptech.glide:glide:n.n.n'	

You	can	use	Glide	to	load	any	image	into	a	UI	element.	The	following	example	loads	an	image	from	a	URL	into	an
	ImageView	:

ImageView	imageView	=	(ImageView)	findViewById(R.id.my_image_view);

Glide.with(this).load("URL").into(imageView);

In	the	code	snippet,		this		refers	to	the	context	of	the	application.	Replace	"URL"	with	the	URL	of	the	image's	location.	By
default,	the	image	is	stored	in	a	local	cache	and	accessed	from	there	the	next	time	it's	called.

For	more	examples,	see	the	Glide	wiki.
For	more	about	Glide,	see	the	Glide	documentation	and	the	[glide]	tag	on	stack	overflow.
For	more	about	Picasso,	see	the	Picasso	documentation	and	the	[picasso]	tag	on	stack	overflow.
To	compare	the	features	of	different	libraries,	search	on	stack	overflow,	for	example	Glide	vs.	Picasso.

Testing	image	rendering

Images	render	differently	on	different	devices.	To	avoid	surprises,	use	the	Android	Virtual	Device	(AVD)	manager	to	create
virtual	devices	that	simulate	screens	of	different	sizes	and	densities.	Use	these	AVDs	to	test	all	your	images.

Speeding	up	your	app

Fetching	and	caching	images
When	your	app	fetches	an	image,	it	can	use	a	lot	of	data.	To	conserve	data,	make	sure	your	request	starts	out	as	small	as
possible.	Define	and	store	pre-sized	images	on	the	server	side,	then	request	images	that	are	already	sized	to	the	View.

Cache	your	images	so	that	each	image	only	needs	to	travel	over	the	network	once.	When	an	image	is	requested,	check
your	cache	first.	Only	request	the	image	over	the	network	if	the	image	is	not	in	the	cache.	Use	an	image-loading	library	like
Glide	or	Picasso	to	handle	caching.	These	libraries	also	manage	the	size	of	the	cache,	getting	rid	of	old	or	unused	images.
For	more	about	libraries,	see	the	libraries	section	of	this	chapter.

To	maximize	performance	in	different	contexts,	set	conditional	rules	for	how	your	app	handles	images,	depending	on
connection	type	and	stability.	Use		ConnectivityManager		to	determine	the	connection	type	and	status,	then	set	conditional
rules	accordingly.	For	example,	when	a	user	is	on	a	data	connection	(not	WiFi),	downgrade	the	requested	image	resolution
to	less	than	screen	resolution.	Upgrade	the	requested	screen	resolution	again	when	the	user	is	on	WiFi.

When	your	app	is	fetching	images	over	a	network,	a	slow	connection	might	leave	your	user	waiting.	Here	are	ways	to	keep
your	app	feeling	fast,	even	if	images	load	slowly:

Prioritize	more	important	images	so	that	they	load	first.	Libraries	like	Glide	and	Picasso	let	you	order	requests	by
image	priority.
Prioritize	requests	for	text	before	requests	for	images.	If	your	app	is	usable	without	images,	for	example	if	it's	a	news
feed	app,	letting	a	user	scroll	past	your	image	can	make	the	app	functional	and	might	even	render	the	image	request

5.1:	Drawables,	Styles,	and	Themes

220

https://github.com/bumptech/glide
http://square.github.io/picasso/
https://github.com/bumptech/glide#download
https://github.com/bumptech/glide/releases
https://github.com/bumptech/glide/wiki
https://github.com/bumptech/glide#glide
http://stackoverflow.com/questions/tagged/glide
http://square.github.io/picasso/
http://stackoverflow.com/questions/tagged/picasso
http://stackoverflow.com/search?q=glide+vs.+picasso
http://developer.android.com/tools/devices/managing-avds.html
https://developer.android.com/reference/android/net/ConnectivityManager.html

obsolete.
Display	placeholder	colors	while	fetching	images.

If	you	display	placeholder	colors,	you	want	the	look	of	your	app	to	stay	consistent	while	the	app	loads	images.	Use	the
Palette	library	to	select	a	placeholder	color	based	on	the	requested	image's	color	balance.	First,	include	the	Palette	library
in	your	build.gradle	file:

dependencies:	{

				compile	'com.android.support:palette-v7:24.2.1'

}

Pull	the	dominant	color	for	the	image	you	want	and	set	it	as	the	background	color	in	your		ImageView	.	If	you	fetch	the	image
using	a	library,	put	the	following	code	after	you've	defined	the	URL	to	load	into	the		ImageView	:

Palette	palette	=	Palette.from(tiles).generate(new	PaletteAsyncListener(){

			Public	void	onGenerated(Pallet	pallette)	{

						Palette.Swatch	background	=	palette.getDominantSwatch();

									if	(background	!=	null)	{

												ImageView.setBackgroundColor(background.getRgb());

										}

					}

}

Serving	images	over	a	network

To	save	bandwidth	and	keep	your	app	moving	fast,	use	WebP	formats	to	serve	and	send	images.

Another	way	to	save	bandwidth	is	to	serve	and	cache	custom-sized	images.	To	do	this,	allow	clients	to	specify	the
resolution	and	size	required	for	their	device	and	View,	then	generate	and	cache	the	needed	image	on	the	server	side
before	you	send	it.

For	example,	a	news	feed	landing	page	might	request	only	a	thumbnail	image.	Instead	of	sending	a	full-sized	image,	send
only	the	thumbnail	specified	by	that		ImageView	.	You	can	further	reduce	the	size	of	the	thumbnail	by	producing	images	at
different	resolutions.

Tip:	Use	the		Activity.isLowRamDevice()		method	to	find	out	whether	a	device	defines	itself	as	"low	RAM."	If	the	method
returns		true	,	send	low-resolution	images	so	that	your	app	uses	less	on-device	memory.

Styles
In	Android,	a	style	is	a	collection	of	attributes	that	define	the	look	and	format	of	a	View.	You	can	apply	the	same	style	to	any
number	of	Views	in	your	app;	for	example,	several	TextViews	might	have	the	same	text	size	and	layout.	Using	styles	allows
you	to	keep	these	common	attributes	in	one	location	and	apply	them	to	each	TextView	using	a	single	line	of	code	in	XML.

You	can	define	styles	yourself	or	use	one	of	the	platform	styles	that	Android	provides.

Defining	and	applying	styles
To	create	a	style,	add	a		<style>		element	inside	a		<resources>		element	in	any	XML	file	located	in	the	res/values/	folder.
When	you	create	a	project	in	Android	Studio,	a	res/values/styles.xml	file	is	created	for	you.

A		<style>		element	includes	the	following:

A		name		attribute.	Use	the	style's	name	when	you	apply	the	style	to	a	View.
An	optional		parent		attribute.	You	learn	about	using		parent		attributes	in	the	Inheritance	section	below.
Any	number	of		<item>		elements	as	child	elements	of		<style>	.	Each		<item>		element	includes	one	style	attribute.

This	example	creates	a	style	that	formats	text	to	use	a	light	gray	monospace	typeface	so	it	looks	like	code:

5.1:	Drawables,	Styles,	and	Themes

221

https://developer.android.com/topic/libraries/support-library/features.html#v7-palette
https://developers.google.com/speed/webp/
https://developer.android.com/reference/android/app/ActivityManager.html#isLowRamDevice()

<resources>

				<style	name="CodeFont">

								<item	name="android:typeface">monospace</item>

								<item	name="android:textColor">#D7D6D7</item>

				</style>

</resources>

The	following	XML	applies	the	new		CodeFont		style	to	a	View:

<TextView

				style="@style/CodeFont"

				android:text="@string/code_string"	/>

Inheritance

A	new	style	can	inherit	the	properties	of	an	existing	style.	When	you	create	a	style	that	inherits	properties,	you	define	only
the	properties	that	you	want	to	change	or	add.	You	can	inherit	properties	from	platform	styles	and	from	styles	that	you
create	yourself.	To	inherit	a	platform	style,	use	the		parent		attribute	to	specify	the	resource	ID	of	the	style	you	want	to
inherit.	For	example,	here's	how	to	inherit	the	Android	platform's	default	text	appearance	(the		TextAppearance		style)	and
change	its	color:

<style	name="GreenText"	parent="@android:style/TextAppearance">

				<item	name="android:textColor">#00FF00</item>

</style>

To	apply	this	style,	use		@style/GreenText	.	To	inherit	a	style	that	you	created	yourself,	use	the	name	of	the	style	you
want	to	inherit	as	the	first	part	of	the	new	style's	name,	and	separate	the	parts	with	a	period:

	name="StyleToInherit.Qualifier"

For	example,	to	create	a	style	that	inherits	the		CodeFont		style	defined	above,	use		CodeFont		as	the	first	part	of	the	new
style's	name:

<style	name="CodeFont.RedLarge">

				<item	name="android:textColor">#FF0000</item>

				<item	name="android:textSize">34sp</item>

</style>

This	example	includes	the		typeface		attribute	from	the	original		CodeFont		style,	overrides	the	original		textColor		attribute
with	red,	and	adds	a	new	attribute,		textSize	.	To	apply	this	style,	use		@style/CodeFont.RedLarge	.

Themes
You	create	a	theme	the	same	way	you	create	a	style,	which	is	by	adding	a		<style>		element	inside	a		<resources>		element
in	any	XML	file	located	in	the	res/values/	folder.

What's	the	difference	between	a	style	and	a	theme?

A	style	applies	to	a	View.	In	XML,	you	apply	a	style	using	the		style		attribute.
A	theme	applies	to	an	entire	Activity	or	application,	rather	than	to	an	individual	View.	In	XML,	you	apply	a	theme	using
the		android:theme		attribute.

Any	style	can	be	used	as	a	theme.	For	example,	you	could	apply	the		CodeFont		style	as	a	theme	for	an	Activity,	and	all	the
text	inside	the	Activity	would	use	gray	monospace	font.

Applying	themes

5.1:	Drawables,	Styles,	and	Themes

222

To	apply	a	theme	to	your	app,	declare	it	inside	an		<application>		element	inside	the	AndroidManifest.xml	file.	This	example
applies	the		AppTheme		theme	to	the	entire	application:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.exampledomain.myapp">

				<application

								...

								android:theme="@style/AppTheme">

				</application>

				...

To	apply	a	theme	to	an	Activity,	declare	it	inside	an		<activity>		element	in	the	AndroidManifest.xml	file.	In	this	example,
the		android:theme		attribute	applies	the	Theme_Dialog	platform	theme	to	the	Activity:

<activity	android:theme="@android:style/Theme.Dialog">

Default	theme
When	you	create	a	new	project	in	Android	Studio,	a	default	theme	is	defined	for	you	within	the	styles.xml	file.	For	example,
this	code	might	be	in	your	styles.xml	file:

<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

			<!--	Customize	your	theme	here.	-->

			<item	name="colorPrimary">@color/colorPrimary</item>

			<item	name="colorPrimaryDark">@color/colorPrimaryDark</item>

			<item	name="colorAccent">@color/colorAccent</item>

</style>

In	this	example,		AppTheme		inherits	from		Theme.AppCompat.Light.DarkActionBar	,	which	is	one	of	the	many	Android	platform
themes	available	to	you.	(You'll	learn	about	the	color	attributes	in	the	unit	on	Material	Design.)

Platform	styles	and	themes

The	Android	platform	provides	a	collection	of	styles	and	themes	that	you	can	use	in	your	app.	To	find	a	list	of	all	of	them,
you	need	to	look	in	two	places:

The	R.style	class	lists	most	of	the	available	platform	styles	and	themes.
The	support.v7.appcompat.R.style	class	lists	more	of	them.	These	styles	and	themes	have	"	AppCompat	"	in	their
names,	and	they	are	supported	by	the	v7	appcompat	library.

The	style	and	theme	names	include	underscores.	To	use	them	in	your	code,	replace	the	underscores	with	periods.	For
example,	here's	how	to	apply	the	Theme_NoTitleBar	theme	to	an	activity:

<activity	android:theme="@android:style/Theme.NoTitleBar"

And	here's	how	to	apply	the	AlertDialog_AppCompat	style	to	a	View:

<TextView

				style="@style/AlertDialog.AppCompat"

				android:text="@string/code_string"	/>

The	documentation	doesn't	describe	all	the	styles	and	themes	in	detail,	but	you	can	infer	things	about	them	from	their
names.	For	example,	in		Theme.AppCompat.Light.DarkActionBar	

"Theme"	indicates	that	this	style	is	meant	to	be	used	as	a	theme.
"AppCompat"	indicates	that	this	theme	is	supported	by	the	v7	appcompat	library.
"Light"	indicates	that	the	theme	consists	of	light	background,	white	by	default.	All	the	text	colors	in	this	theme	are	dark,

5.1:	Drawables,	Styles,	and	Themes

223

https://developer.android.com/reference/android/R.style.html#Theme_Dialog
https://developer.android.com/reference/android/R.style.html
https://developer.android.com/reference/android/support/v7/appcompat/R.style.html
https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/R.style.html#Theme_NoTitleBar
https://developer.android.com/reference/android/support/v7/appcompat/R.style.html#AlertDialog_AppCompat
https://developer.android.com/reference/android/support/v7/appcompat/R.style.html#Theme_AppCompat_Light_DarkActionBar
https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat

to	contrast	with	the	light	background.	(If	you	wanted	a	dark	background	and	light	text,	your	theme	could	inherit	from	a
theme	such	as		Theme.AppCompat		without	"Light"	in	the	name.)
"DarkActionBar"	indicates	that	a	dark	color	is	used	for	the	action	bar,	so	any	text	or	icons	in	the	action	bar	are	a	light
color.

Another	useful	theme	is		Theme.AppCompat.DayNight	,	which	enables	the	user	to	browse	in	a	low-contrast	"night	mode"	at
night.	It	automatically	changes	the	theme	from		Theme.AppCompat.Light		to		Theme.AppCompat	,	based	on	the	time	of	day.	To
learn	more	about	the		DayNight		theme,	read	Chris	Banes's	blog	post.

To	learn	more	about	using	platform	styles	and	themes,	visit	the	styles	and	themes	guide.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Drawables,	Styles,	and	Themes

Learn	more
Drawable	resources	guide
Image	Asset	Studio	guide
Vector	Asset	Studio	guide
Roman	Nurik's	Android	Asset	Studio
Styles	and	themes	guide

5.1:	Drawables,	Styles,	and	Themes

224

https://developer.android.com/reference/android/support/v7/appcompat/R.style.html#Theme_AppCompat
https://medium.com/@chrisbanes/appcompat-v23-2-daynight-d10f90c83e94
https://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/51_p_themes,_custom_styles,_drawables.html
https://developer.android.com/guide/topics/resources/drawable-resource.html
https://developer.android.com/studio/write/image-asset-studio.html
https://developer.android.com/studio/write/vector-asset-studio.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://developer.android.com/guide/topics/ui/themes.html

5.2:	Material	Design

Table	of	Contents:
Introduction
Principles	of	Material	Design
Colors
Typography
Layout
Components	and	patterns
Motion
Animations
Related	practical
Learn	more

Material	Design	is	a	visual	design	philosophy	that	Google	created	in	2014.	The	aim	of	Material	Design	is	a	unified	user
experience	across	platforms	and	device	sizes.	Material	Design	includes	a	set	of	guidelines	for	style,	layout,	motion,	and
other	aspects	of	app	design.	The	complete	guidelines	are	available	in	the	Material	Design	Spec.

Material	Design	is	for	desktop	web	applications	as	well	as	for	mobile	apps.	This	chapter	focuses	only	on	Material	Design	for
mobile	apps	on	Android.

Principles	of	Material	Design

The	"material"	metaphor
In	Material	Design,	elements	in	your	Android	app	behave	like	real	world	materials:	they	cast	shadows,	occupy	space,	and
interact	with	each	other.

Bold,	graphic,	intentional
Material	Design	involves	deliberate	color	choices,	edge-to-edge	imagery,	large-scale	typography,	and	intentional	white
space	that	create	a	bold	and	graphic	interface.

5.2:	Material	Design

225

https://material.google.com/

Emphasize	user	actions	in	your	app	so	that	the	user	knows	right	away	what	to	do,	and	how	to	do	it.	For	example,	highlight
things	that	users	can	interact	with,	such	as	buttons,	EditText	fields,	and	switches.	

1.	 In	this	layout,	the	floating	action	button	is	highlighted	with	a	pink	accent	color.

Meaningful	motion

Make	animations	and	other	motions	in	your	app	meaningful,	so	they	don't	happen	at	random.	Use	motions	to	reinforce	the
idea	that	the	user	is	the	app's	primary	mover.	For	example,	design	your	app	so	that	most	motions	are	initiated	by	the	user's
actions,	not	by	events	outside	the	user's	control.	You	can	also	use	motion	to	focus	the	user's	attention,	give	the	user	subtle
feedback,	or	highlight	an	element	of	your	app.

When	your	app	presents	an	object	to	the	user,	make	sure	the	motion	doesn't	break	the	continuity	of	the	user's	experience.
For	example,	the	user	shouldn't	have	to	wait	for	an	animation	or	transition	to	complete.

The	Motion	section	in	this	chapter	goes	into	more	detail	about	how	to	use	motion	in	your	app.

Colors

Material	Design	color	palette
Material	Design	principles	include	the	use	of	bold	color.	The	Material	Design	color	palette	contains	colors	to	choose	from,
each	with	a	primary	color	and	shades	labeled	from	50	to	900:

Choose	a	color	labeled	"500"	as	the	primary	color	for	your	brand.	Use	that	color	and	shades	of	that	color	in	your	app.
Choose	a	contrasting	color	as	your	accent	color	and	use	it	to	create	highlights	in	your	app.	Select	any	color	that	starts
with	"A."

When	you	create	an	Android	project	in	Android	Studio,	a	sample	Material	Design	color	scheme	is	selected	for	you	and
applied	to	your	theme.	In	values/colors.xml,	three		<color>		elements	are	defined,		colorPrimary	,		colorPrimaryDark	,	and
	colorAccent	:

5.2:	Material	Design

226

https://material.google.com/style/color.html#color-color-palette

<?xml	version="1.0"	encoding="utf-8"?>

<resources>

				<color	name="colorPrimary">#3F51B5</color>

				<!--	Indigo.	-->

				<color	name="colorPrimaryDark">#303F9F</color>

				<!--	A	darker	shade	of	indigo.	-->

				<color	name="colorAccent">#FF4081</color>

				<!--	A	shade	of	pink.	-->

</resources>

In	values/styles.xml,	the	three	defined	colors	are	applied	to	the	default	theme,	which	applies	the	colors	to	some	app
elements	by	default:

	colorPrimary		is	used	by	several	Views	by	default.	For	example,	in	the		AppTheme		theme,		colorPrimary		is	used	as	the
background	color	for	the	action	bar.	Change	this	value	to	the	"500"	color	that	you	select	as	your	brand's	primary	color.
	colorPrimaryDark		is	used	in	areas	that	need	to	slightly	contrast	with	your	primary	color,	for	example	the	status	bar.	Set
this	value	to	a	slightly	darker	version	of	your	primary	color.
	colorAccent		is	used	as	the	highlight	color	for	several	Views.	It's	also	used	for	switches	in	the	"on"	position,	floating
action	buttons,	and	more.

In	the	screenshot	below,	the	background	of	the	action	bar	uses		colorPrimary		(indigo),	the	status	bar	uses
	colorPrimaryDark		(a	darker	shade	of	indigo),	and	the	switch	in	the	"on"	position	uses		colorAccent		(a	shade	of	pink).	

1.	 In	this	layout,	the	switch	in	the	"on"	position	is	highlighted	with	a	pink	accent	color.

In	summary,	here's	how	to	use	the	Material	Design	color	palette	in	your	Android	app:

1.	 Pick	a	primary	color	for	your	app	from	Material	Design	color	palette	and	copy	its	hex	value	into	the		colorPrimary		item
in	colors.xml.

2.	 Pick	a	darker	shade	of	this	color	and	copy	its	hex	value	into	the		colorPrimaryDark		item.
3.	 Pick	an	accent	color	from	the	shades	starting	with	an	"A"	and	copy	its	hex	value	into	the	colorAccent	item.
4.	 If	you	need	more	colors,	create	additional		<color>		elements	in	the	colors.xml	file.	For	example,	you	could	pick	a

lighter	version	of	indigo	and	create	an	additional		<color>		element	named		colorPrimaryLight	.	(The	name	is	up	to
you.)

5.2:	Material	Design

227

https://material.google.com/style/color.html#color-color-palette

<color	name="colorPrimaryLight">#9FA8DA</color>

<!--	A	lighter	shade	of	indigo.	-->

To	use	this	color,	reference	it	as		@color/colorPrimaryLight	.

Changing	the	values	in	colors.xml	automatically	changes	the	colors	of	the	Views	in	your	app,	because	the	colors	are
applied	to	the	theme	in	styles.xml.

Contrast
Make	sure	all	the	text	in	your	app's	UI	contrasts	with	its	background.	Where	you	have	a	dark	background,	make	the	text	on
top	of	it	a	light	color,	and	vice	versa.	This	kind	of	contrast	is	important	for	readability	and	accessibility,	because	not	all
people	see	colors	the	same	way.

If	you	use	a	platform	theme	such	as		Theme.AppCompat	,	contrast	between	text	and	its	background	is	handled	for	you.	For
example:

If	your	theme	inherits	from		Theme.AppCompat	,	the	system	assumes	you	are	using	a	dark	background.	Therefore	all	of
the	text	is	near	white	by	default.
If	your	theme	inherits	from		Theme.AppCompat.Light	,	the	text	is	near	black,	because	the	theme	has	a	light	background.
If	you	use	the		Theme.AppCompat.Light.DarkActionBar		theme,	the	text	in	the	action	bar	is	near	white,	to	contrast	with	the
action	bar's	dark	background.	The	rest	of	the	text	in	the	app	is	near	black,	to	contrast	with	the	light	background.

Use	color	contrast	to	create	visual	separation	among	the	elements	in	your	app.	Use	your		colorAccent		color	to	to	call
attention	to	key	UI	elements	such	as	floating	action	buttons	and	switches	in	the	"on"	position.

Opacity
Your	app	can	display	text	with	different	degrees	of	opacity	to	convey	the	relative	importance	of	information.	For	example,
text	that's	less	important	might	be	nearly	transparent	(low	opacity).

Set	the		android:textColor		attribute	using	any	of	these	formats:		"#rgb"	,		"#rrggbb"	,		"#argb"	,	or		"#aarrggbb"	.	To	set	the
opacity	of	text,	use	the		"#argb"		or		"#aarrggbb"		format	and	include	a	value	for	the	alpha	channel.	The	alpha	channel	is
the		a		or	the		aa		at	the	start	of	the		textColor		value.

The	maximum	opacity	value,		FF		in	hex,	makes	the	color	completely	opaque.	The	minimum	value,		00		in	hex,	makes	the
color	complete	transparent.

To	determine	what	hex	number	to	use	in	the	alpha	channel:

1.	 Decide	what	level	of	opacity	you	want	to	use,	as	a	percentage.	The	level	of	opacity	used	for	text	depends	on	whether
your	background	is	dark	or	light.	To	find	out	what	level	of	opacity	to	use	in	different	situations,	see	the	Text	color	portion
of	the	Material	Design	guide.

2.	 Multiply	that	percentage,	as	a	decimal	value,	by	255.	For	example,	if	you	need	primary	text	that's	87%	opaque,	multiply
0.87	x	255.	The	result	is	221.85.

3.	 Round	the	result	to	the	nearest	whole	number:	222.
4.	 Use	a	hex	converter	to	convert	the	result	to	hex:		DE	.	If	the	result	is	a	single	value,	prefix	it	with		0	.

In	the	following	XML	code,	the	background	of	the	text	is	dark,	and	the	color	of	the	primary	text	is	87%	white	(deffffff).
The	first	two	numbers	of	the	color	code	(de)	indicate	the	opacity.

<TextView

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:text="Hello	World!"

			android:textSize="45dp"

			android:background="@color/colorPrimaryDark"

			android:textColor="#deffffff"/>

5.2:	Material	Design

228

https://material.google.com/usability/accessibility.html
https://material.google.com/style/color.html#color-text-background-colors

Typography

Typeface

Roboto	is	the	standard	Material	Design	typeface	on	Android.	Roboto	has	six	weights:	Thin,	Light,	Regular,	Medium,	Bold,

and	Black.	

Font	styles

The	Android	platform	provides	predefined	font	styles	and	sizes	that	you	can	use	in	your	app.	These	styles	and	sizes	were
developed	to	balance	content	density	and	reading	comfort	under	typical	conditions.	Type	sizes	are	specified	with	sp
(scaleable	pixels)	to	enable	large	type	modes	for	accessibility.

5.2:	Material	Design

229

https://material.google.com/usability/accessibility.html

Be	careful	not	to	use	too	many	different	type	sizes	and	styles	together	in	your	layout.	

To	use	one	of	these	predefined	styles	in	a	View,	set	the		android:textAppearance		attribute.	This	attribute	defines	the	default
appearance	of	the	text:	its	color,	typeface,	size,	and	style.	Use	the	backward-compatible		TextAppearance.AppCompat		style.

For	example,	to	make	a	TextView	appear	in	the	Display	3	style,	add	the	following	attribute	to	the	TextView	in	XML:

android:textAppearance="@style/TextAppearance.AppCompat.Display3"

For	more	information	on	styling	text,	view	the	Typography	Material	Design	guidelines.

Layout

Metrics	and	keylines

Components	in	the	Material	Design	templates	that	are	meant	for	mobile,	tablet,	and	desktop	devices	align	to	an	8dp	square
grid.	A	dp	is	a	density-independent	pixel,	an	abstract	unit	based	on	screen	density.	A	dp	is	similar	to	an	sp,	but	sp	is	also
scaled	by	the	user's	font	size	preference.	That's	why	sp	is	preferred	for	accessibility.	For	more	about	units	of	measurement,
refer	to	the	Layouts,	Views,	and	Resources	unit.

5.2:	Material	Design

230

https://material.google.com/style/typography.html
https://material.google.com/layout/units-measurements.html#units-measurements-density-independent-pixels-dp

The	8dp	square	grid	guides	the	placement	of	elements	in	your	layout.	Every	square	in	the	grid	is	8dp	x	8dp,	so	the	height
and	width	of	every	element	in	the	layout	is	a	multiple	of	8dp.	

1.	 The	status	bar	in	this	layout	is	24dp	tall,	the	height	of	three	grid	squares.
2.	 The	toolbar	is	56dp	tall,	the	height	of	seven	grid	squares.
3.	 One	of	the	right-hand	content	margins	is	16dp	from	the	edge	of	the	screen,	the	width	of	two	grid	squares.

Iconography	in	toolbars	align	to	a	4dp	square	grid	instead	of	an	8dp	square	grid,	so	the	dimensions	of	icons	in	the	toolbar
are	multiples	of	4dp.

5.2:	Material	Design

231

Keylines	are	outlines	in	a	layout	grid	that	determine	the	placement	of	text	and	icons.	For	example,	keylines	mark	the	edges

of	the	margins	in	a	layout.	

1.	 Keyline	showing	the	left	margin	for	the	screen	edge,	which	in	this	case	is	16dp.
2.	 Keyline	showing	the	left	margin	for	content	associated	with	an	icon	or	avatar,	72dp.
3.	 Keyline	showing	the	right	margin	for	the	screen	edge,	16dp.

Material	Design	typography	aligns	to	a	4dp	baseline	grid,	which	is	a	grid	made	up	only	of	horizontal	lines.

The	Material	Design	guide	provides	downloadable	templates	for	commonly	used	UI	screens.	To	learn	more	about	metrics
and	keylines	in	Material	Design,	visit	the	metrics	and	keylines	guide.

Components	and	patterns
Buttons	and	many	other	Views	used	in	Android	conform	by	default	to	Material	Design	principles.	The	Material	Design	guide
includes	components	and	patterns	that	you	can	build	on	to	help	your	users	intuit	how	the	elements	in	your	UI	work,	even	if
users	are	new	to	your	app.

Use	Material	Design	components	to	guide	the	specs	and	behavior	of	buttons,	chips,	cards,	and	many	other	UI	elements.
Use	Material	Design	patterns	to	guide	how	you	format	dates	and	times,	gestures,	the	navigation	drawer,	and	many	other
aspects	of	your	UI.

This	section	teaches	you	about	the	Design	Support	Library	and	some	of	the	components	and	patterns	that	are	available	to
you.	For	complete	documentation	about	all	the	components	and	patterns	that	you	can	use,	see	the	Material	Design	guide.

Design	Support	Library

5.2:	Material	Design

232

https://material.google.com/layout/metrics-keylines.html#metrics-keylines-keylines-spacing
https://material.google.com/layout/metrics-keylines.html
https://material.google.com/components/
https://material.google.com/patterns/
https://material.google.com/

The	Design	package	provides	APIs	to	support	adding	Material	Design	components	and	patterns	to	your	apps.	The	Design
Support	Library	adds	support	for	various	Material	Design	components	and	patterns	for	you	to	build	on.	To	use	the	library,
include	the	following	dependency	in	your	build.gradle	file:

compile	'com.android.support:design:25.0.1'

To	make	sure	you	have	the	most	recent	version	number	for	the	Design	Support	Library,	check	the	Support	Library	page.

Floating	action	buttons	(FABs)
Use	a	floating	action	button	(FAB)	for	actions	you	want	to	encourage	users	to	take.	A	FAB	is	a	circled	icon	that	floats
"above"	the	UI.	On	focus	it	changes	color	slightly,	and	it	appears	to	lift	up	when	selected.	When	tapped,	it	can	contain

related	actions.	

1.	 A	normal-sized	FAB

To	implement	a	FAB,	use	the		FloatingActionButton		widget	and	set	the	FAB's	attributes	in	your	layout	XML.	For	example:

<android.support.design.widget.FloatingActionButton

				android:id="@+id/addNewItemFAB"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:src="@drawable/ic_plus_sign"

				app:fabSize="normal"

				app:elevation="10%"	/>

The		fabSize		attribute	sets	the	FAB's	size.	It	can	be		"normal"		(56dp),		"mini"		(40dp),	or		"auto"	,	which	changes	based
on	the	window	size.

The	FAB's	elevation	is	the	distance	between	its	surface	and	the	depth	of	its	shadow.	You	can	set	the		elevation		attribute
as	a	reference	to	another	resource,	a	string,	a	Boolean,	or	several	other	ways.

To	learn	about	all	the	attributes	you	can	set	for	a	FAB	including		clickable	,		rippleColor	,	and		backgroundTint	,	see
FloatingActionButton.	To	make	sure	you're	using	FABs	as	intended,	check	the	extensive	FAB	usage	information	in	the
Material	Design	guide.

5.2:	Material	Design

233

https://developer.android.com/reference/android/support/design/package-summary.html
https://developer.android.com/topic/libraries/support-library/features.html#design
https://developer.android.com/topic/libraries/support-library/features.html#design
https://developer.android.com/reference/android/support/design/widget/FloatingActionButton.html#attr_android.support.design:fabSize
https://developer.android.com/reference/android/support/design/widget/FloatingActionButton.html
https://material.google.com/components/buttons-floating-action-button.html

Navigation	drawers

A	navigation	drawer	is	a	panel	that	slides	in	from	the	left	and	contains	navigation	destinations	for	your	app.	A	navigation
drawer	spans	the	height	of	the	screen,	and	everything	behind	it	is	visible,	but	darkened.	

1.	 An	"open"	navigation	drawer

To	implement	a	navigation	drawer,	use	the		DrawerLayout		APIs	available	in	the	Support	Library.

In	your	XML,	use	a		DrawerLayout		object	as	the	root	view	of	your	layout.	Inside	it,	add	two	views,	one	for	your	primary
layout	when	the	drawer	is	hidden,	and	one	for	the	contents	of	the	drawer.

For	example,	the	following	layout	has	two	child	views:	a		FrameLayout		to	contain	the	main	content	(populated	by	a
	Fragment		at	runtime),	and	a		ListView		for	the	navigation	drawer.

5.2:	Material	Design

234

<android.support.v4.widget.DrawerLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:id="@+id/drawer_layout"

				android:layout_width="match_parent"

				android:layout_height="match_parent">

				<!--	The	main	content	view	-->

				<FrameLayout

								android:id="@+id/content_frame"

								android:layout_width="match_parent"

								android:layout_height="match_parent"	/>

				<!--	The	navigation	drawer	-->

				<ListView	android:id="@+id/left_drawer"

								android:layout_width="240dp"

								android:layout_height="match_parent"

								android:layout_gravity="start"

								android:choiceMode="singleChoice"

								android:divider="@android:color/transparent"

								android:dividerHeight="0dp"

								android:background="#111"/>

</android.support.v4.widget.DrawerLayout>

For	more	information,	see	Creating	a	Navigation	Drawer	and	the	usage	information	in	the	Material	Design	guide.

Snackbars

A	snackbar	provides	brief	feedback	about	an	operation	through	a	message	in	a	horizontal	bar	on	the	screen.	It	contains	a
single	line	of	text	directly	related	to	the	operation	performed.	A	snackbar	can	contain	a	text	action,	but	no	icons.	

1.	 Snackbar

5.2:	Material	Design

235

https://developer.android.com/training/implementing-navigation/nav-drawer.html
https://material.google.com/components/buttons-floating-action-button.html

Snackbars	automatically	disappear	after	a	timeout	or	after	a	user	interaction	elsewhere	on	the	screen.	You	can	associate	a
snackbar	with	any	kind	of	view	(any	object	derived	from	the		View		class).	However,	if	you	associate	the	snackbar	with	a
	CoordinatorLayout	,	the	snackbar	gains	additional	features:

The	user	can	dismiss	the	snackbar	by	swiping	it	away.
The	layout	moves	some	other	UI	elements	when	the	snackbar	appears.	For	example,	if	the	layout	has	a	FAB,	the
layout	moves	the	FAB	up	when	it	shows	the	snackbar,	instead	of	drawing	the	snackbar	on	top	of	the	FAB.

To	create	a		Snackbar		object,	use	the		Snackbar.make()		method.	Specify	the	ID	of	the		CoordinatorLayout		view	to	use	for
the	snackbar,	the	message	that	the	snackbar	displays,	and	the	length	of	time	to	show	the	message.	For	example,	this	Java
statement	creates	the	snackbar	and	calls		show()		to	show	the	snackbar	to	the	user:

Snackbar.make(findViewById(R.id.myCoordinatorLayout),	R.string.email_sent,

																								Snackbar.LENGTH_SHORT).show;

For	more	information,	see	Building	and	Displaying	a	Pop-Up	Message	and	the	Snackbar	reference.	To	make	sure	you're
using	snackbars	as	intended,	see	the	snackbar	usage	information	in	the	Material	Design	guide.

Tip:	A	toast	is	similar	to	a	snackbar,	but	toasts	are	usually	used	for	system	messaging,	and	toasts	can't	be	swiped	off	the
screen.

Tabs
Use	tabs	to	organize	content	at	a	high	level.	For	example,	the	user	might	use	tabs	to	switch	between	Views,	data	sets,	or
functional	aspects	of	an	app.	Present	tabs	as	a	single	row	above	their	associated	content.	Make	tab	labels	short	and
informative.

5.2:	Material	Design

236

https://developer.android.com/reference/android/support/design/widget/Snackbar.html#make(android.view.View,%20int,%20int)
https://developer.android.com/training/snackbar/showing.html
https://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://material.google.com/components/snackbars-toasts.html

You	can	you	use	tabs	with	swipe	views	in	which	users	navigate	between	tabs	with	a	horizontal	finger	gesture	(horizontal
paging).	If	your	tabs	use	swipe	views,	don't	pair	the	tabs	with	content	that	also	supports	swiping.	

1.	 Three	tabs,	with	the	ALL	tab	selected

For	information	on	implementing	tabs,	see	Creating	Swipe	Views	with	Tabs.	To	make	sure	you're	using	tabs	as	intended,
see	the	extensive	tab	usage	information	in	the	Material	Design	guide.

Cards
A	card	is	a	sheet	of	material	that	serves	as	an	entry	point	to	more	detailed	information.	Each	card	covers	only	one	subject.
A	card	may	contain	a	photo,	text,	and	a	link.	It	can	display	content	containing	elements	of	varying	size,	such	as	photos	with
captions	of	variable	length.

A	card	collection	is	a	layout	of	cards	on	the	same	plane.

The		CardView		widget	is	included	as	part	of	the	v7	support	library.	To	use	it,	add	the	following	dependency	to	your
build.gradle	file:

compile	'com.android.support:cardview-v7:24.2.1'

5.2:	Material	Design

237

https://developer.android.com/training/implementing-navigation/lateral.html
https://material.google.com/components/tabs.html#tabs-usage

1.	 One	card	in	a	card	collection

For	more	information	on	using	the		CardView		widget,	visit	the	card	guide.

Lists

5.2:	Material	Design

238

https://developer.android.com/training/material/lists-cards.html#CardView

A	list	is	a	single	continuous	column	of	rows	of	equal	width.	Each	row	functions	as	a	container	for	a	tile.	Tiles	hold	content,

and	can	vary	in	height	within	a	list.	

1.	 A	tile	within	the	list
2.	 A	list	with	rows	of	equal	width,	each	containing	a	tile

To	create	a	list,	use	the		RecyclerView		widget.	Include	the	following	dependency	in	your	build.gradle	file.

compile	'com.android.support:recyclerview-v7:24.2.1'

For	more	information	on	creating	lists	in	Android,	see	the	creating	lists	guide.

Motion
Motion	in	the	world	of	Material	Design	is	used	to	describe	spatial	relationships,	functionality,	and	intention	with	beauty	and
fluidity.	Motion	shows	how	an	app	is	organized	and	what	it	can	do.

Motion	in	Material	Design	must	be:

1.	 Responsive.	It	quickly	responds	to	user	input	precisely	where	the	user	triggers	it.
2.	 Natural.	Movement	is	inspired	by	forces	in	the	natural	world.	For	example,	real-world	forces	like	gravity	inspire	an

element's	movement	along	an	arc	rather	than	in	a	straight	line.	

5.2:	Material	Design

239

https://developer.android.com/training/material/lists-cards.html#RecyclerView

3.	 Aware.	Material	is	aware	of	its	surroundings,	including	the	user	and	other	material	around	it.	Objects	can	be	attracted
to	other	objects	in	the	UI,	and	they	respond	appropriately	to	user	intent.	As	elements	transition	into	view,	their
movement	is	choreographed	in	a	way	that	defines	their	relationships.	

5.2:	Material	Design

240

4.	 Intentional.	Movement	guides	the	user's	focus	to	the	right	place	at	the	right	time.	Movement	can	communicate
different	signals,	such	as	whether	an	action	is	unavailable.	

5.2:	Material	Design

241

To	put	these	principles	into	practice	in	Android,	use	animations	and	transitions.

Animations
There	are	three	ways	you	can	create	animation	in	your	app:

Property	animation	changes	an	object's	properties	over	a	specified	period	of	time.The	property	animation	system	was
introduced	in	Android	3.0	(API	level	11).	Property	animation	is	more	flexible	than	view	animation,	and	it	offers	more
features.
View	animation	calculates	animation	using	start	points,	end	points,	rotation,	and	other	aspects	of	animation.	The
Android	view	animation	system	is	older	than	the	property	animation	system	and	can	only	be	used	for	Views.	It's
relatively	easy	to	set	up	and	offers	enough	capabilities	for	many	use	cases.
Drawable	animation	lets	you	load	a	series	of	drawable	resources	one	after	another	to	create	an	animation.	Drawable
animation	is	useful	if	you	want	to	animate	things	that	are	easier	to	represent	with	drawable	resources,	such	as	a
progression	of	bitmap	images.

For	complete	details	about	these	three	types	for	animation,	see	the	Animation	and	Graphics	Overview.

The	Material	Design	theme	provides	some	default	animations	for	touch	feedback	and	activity	transitions.	The	animation
APIs	let	you	create	custom	animations	for	touch	feedback	in	UI	controls,	changes	in	view	state,	and	activity	transitions.

5.2:	Material	Design

242

https://developer.android.com/guide/topics/graphics/prop-animation.html
https://developer.android.com/guide/topics/graphics/view-animation.html
https://developer.android.com/guide/topics/graphics/drawable-animation.html
https://developer.android.com/guide/topics/graphics/overview.html

Touch	feedback

Touch	feedback	provides	instant	visual	confirmation	at	the	point	of	contact	when	a	user	interacts	with	a	UI	element.	The
default	touch	feedback	animations	for	buttons	use	the	RippleDrawable	class,	which	transitions	between	different	states	with
a	ripple	effect.

In	this	example,	ripples	of	ink	expand	outward	from	the	point	of	touch	to	confirm	user	input.	The	card	"lifts"	and	casts	a
shadow	to	indicate	an	active	state:	

In	most	cases,	you	apply	ripple	functionality	in	your	view	XML	by	specifying	the	view	background	as	follows:

	?android:attr/selectableItemBackground		for	a	bounded	ripple.
	?android:attr/selectableItemBackgroundBorderless		for	a	ripple	that	extends	beyond	the	view.	It	is	drawn	upon,	and
bounded	by,	the	nearest	parent	of	the	view	with	a	non-null	background.
Note:	The		selectableItemBackgroundBorderless		attribute	was	introduced	in	API	level	21.

Alternatively,	you	can	define	a	RippleDrawable	as	an	XML	resource	using	the		<ripple>		element.

You	can	assign	a	color	to	RippleDrawable	objects.	To	change	the	default	touch	feedback	color,	use	the	theme's
	android:colorControlHighlight		attribute.

For	more	information,	see	the	API	reference	for	the	RippleDrawable	class.

5.2:	Material	Design

243

https://developer.android.com/reference/android/graphics/drawable/RippleDrawable.html
https://developer.android.com/reference/android/graphics/drawable/RippleDrawable.html
https://developer.android.com/reference/android/graphics/drawable/RippleDrawable.html
https://developer.android.com/reference/android/graphics/drawable/RippleDrawable.html

Circular	reveal

A	reveal	animation	shows	or	hides	a	group	of	UI	elements	by	animating	a	view's	clipping	boundaries.	In	circular	reveal,	you
reveal	or	hide	a	view	by	animating	a	clipping	circle.	(A	clipping	circle	is	a	circle	that	crops	or	hides	the	part	of	an	image
that's	outside	the	circle.)

To	animate	a	clipping	circle,	use	the		ViewAnimationUtils.createCircularReveal()		method.	For	example,	here's	how	to
reveal	a	previously	invisible	view	using	circular	reveal:

//	previously	invisible	view

View	myView	=	findViewById(R.id.my_view);

//	get	the	center	for	the	clipping	circle

int	cx	=	myView.getWidth()	/	2;

int	cy	=	myView.getHeight()	/	2;

//	get	the	final	radius	for	the	clipping	circle

float	finalRadius	=	(float)	Math.hypot(cx,	cy);

//	create	the	animator	for	this	view	(the	start	radius	is	zero)

Animator	anim	=

				ViewAnimationUtils.createCircularReveal(myView,	cx,	cy,	0,	finalRadius);

//	make	the	view	visible	and	start	the	animation

myView.setVisibility(View.VISIBLE);

anim.start();

Here's	how	to	hide	a	previously	visible	view	using	circular	reveal:

//	previously	visible	view

final	View	myView	=	findViewById(R.id.my_view);

//	get	the	center	for	the	clipping	circle

int	cx	=	myView.getWidth()	/	2;

int	cy	=	myView.getHeight()	/	2;

//	get	the	initial	radius	for	the	clipping	circle

float	initialRadius	=	(float)	Math.hypot(cx,	cy);

//	create	the	animation	(the	final	radius	is	zero)

Animator	anim	=

				ViewAnimationUtils.createCircularReveal(myView,	cx,	cy,	initialRadius,	0);

//	make	the	view	invisible	when	the	animation	is	done

anim.addListener(new	AnimatorListenerAdapter()	{

				@Override

				public	void	onAnimationEnd(Animator	animation)	{

								super.onAnimationEnd(animation);

								myView.setVisibility(View.INVISIBLE);

				}

});

//	start	the	animation

anim.start();

Activity	transitions

Activity	transitions	are	animations	that	provide	visual	connections	between	different	states	in	your	UI.	You	can	specify
custom	animations	for	enter	and	exit	transitions,	and	for	transitions	of	shared	elements	between	activities.

An	enter	transition	determines	how	views	in	an	activity	enter	the	scene.	For	example	in	an	explode	enter	transition,
views	enter	the	scene	from	the	outside	and	fly	towards	the	center	of	the	screen.
An	exit	transition	determines	how	views	in	an	activity	exit	the	scene.	For	example	in	an	explode	exit	transition,	views
exit	the	scene	by	moving	away	from	the	center.

5.2:	Material	Design

244

https://developer.android.com/reference/android/view/ViewAnimationUtils.html#createCircularReveal(android.view.View,%20int,%20int,%20float,%20float)

A	shared	elements	transition	determines	how	views	that	are	shared	between	two	activities	transition	between	these
activities.	For	example,	if	two	activities	have	the	same	image	in	different	positions	and	sizes,	the		changeImageTransform	
shared	element	transition	translates	and	scales	the	image	smoothly	between	these	activities.

To	use	these	transitions,	set	transition	attributes	in	a		<style>		element	in	your	XML.	The	following	example	creates	a
theme	named		BaseAppTheme		that	inherits	one	of	the	Material	Design	themes.	The		BaseAppTheme		theme	uses	all	three	types
of	activity	transitions:

<style	name="BaseAppTheme"	parent="android:Theme.Material">

		<!--	enable	window	content	transitions	-->

		<item	name="android:windowActivityTransitions">true</item>

		<!--	specify	enter	and	exit	transitions	-->

		<item	name="android:windowEnterTransition">@transition/explode</item>

		<item	name="android:windowExitTransition">@transition/explode</item>

		<!--	specify	shared	element	transitions	-->

		<item	name="android:windowSharedElementEnterTransition">

				@transition/change_image_transform</item>

		<item	name="android:windowSharedElementExitTransition">

				@transition/change_image_transform</item>

</style>

The		change_image_transform		transition	in	this	example	is	defined	as	follows:

<!--	res/transition/change_image_transform.xml	-->

<!--	(see	also	Shared	Transitions	below)	-->

<transitionSet	xmlns:android="http://schemas.android.com/apk/res/android">

		<changeImageTransform/>

</transitionSet>

The		changeImageTransform		element	corresponds	to	the		ChangeImageTransform		class.	For	more	information,	see	the	API
reference	for		Transition	.

To	enable	window	content	transitions	in	your	Java	code	instead,	call	the		Window.requestFeature()		method:

//	inside	your	activity	(if	you	did	not	enable	transitions	in	your	theme)

getWindow().requestFeature(Window.FEATURE_CONTENT_TRANSITIONS);

//	set	an	exit	transition

getWindow().setExitTransition(new	Explode());

5.2:	Material	Design

245

https://developer.android.com/reference/android/view/Window.html#requestFeature(int)

To	specify	transitions	in	your	code,	call	the	following	methods	with	a		Transition		object:

	Window.setEnterTransition()	

	Window.setExitTransition()	

	Window.setSharedElementEnterTransition()	

	Window.setSharedElementExitTransition()	

For	details	about	these	methods,	see	the		Window	reference	documentation	.

To	start	an	activity	that	uses	transitions,	use	the		ActivityOptions.makeSceneTransitionAnimation()		method.

For	more	about	implementing	transitions	in	your	app,	see	the	activity	transitions	guide.

Curved	motion

In	Android	5.0	(API	level	21)	and	above,	you	can	define	custom	timing	curves	and	curved	motion	patterns	for	animations.
To	do	this,	use	the		PathInterpolator		class,	which	interpolates	an	object's	path	based	on	a	Bézier	curve	or	a		Path		object.
The	interpolator	specifies	a	motion	curve	in	a	1x1	square,	with	anchor	points	at	(0,0)	and	(1,1)	and	control	points	that	you
specify	using	the	constructor	arguments.	You	can	also	define	a	path	interpolator	as	an	XML	resource:

5.2:	Material	Design

246

https://developer.android.com/reference/android/app/ActivityOptions.html#makeSceneTransitionAnimation(android.app.Activity, android.view.View, java.lang.String)
https://developer.android.com/training/material/animations.html#Transitions

<pathInterpolator	xmlns:android="http://schemas.android.com/apk/res/android"

				android:controlX1="0.4"

				android:controlY1="0"

				android:controlX2="1"

				android:controlY2="1"/>

The	system	provides	XML	resources	for	the	three	basic	curves	in	the	material	design	specification:

	@interpolator/fast_out_linear_in.xml	

	@interpolator/fast_out_slow_in.xml	

	@interpolator/linear_out_slow_in.xml	

To	use	a		PathInterpolator		object,	pass	it	to	the		Animator.setInterpolator()		method.

The		ObjectAnimator		class	has	constructors	you	can	use	to	animate	coordinates	along	a	path	using	two	or	more	properties
at	once.	For	example,	the	following	Java	code	uses	a		Path		object	to	animate	the	X	and	Y	properties	of	a	view:

ObjectAnimator	mAnimator;

mAnimator	=	ObjectAnimator.ofFloat(view,	View.X,	View.Y,	path);

...

mAnimator.start();

Other	custom	animations

Other	custom	animations	are	possible,	including	animated	state	changes	(using	the		StateListAnimator		class)	and
animated	vector	drawables	(using	the		AnimatedVectorDrawable		class).	For	complete	details,	see	Defining	Custom
Animations.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Material	Design:	Lists,	Cards	and	Colors

Learn	more
Material	Design	for	Android
Material	Design	for	Developers

5.2:	Material	Design

247

https://developer.android.com/reference/android/animation/Animator.html#setInterpolator(android.animation.TimeInterpolator)
https://developer.android.com/training/material/animations.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/52_p_material_design_cards_and_the_fab.html
https://developer.android.com/design/material/index.html
https://developer.android.com/training/material/index.html

5.3:	Providing	Resources	for	Adaptive	Layouts

Table	of	Contents:
Introduction
Externalizing	resources
Grouping	resources
Alternative	resources
Creating	alternative	resources
Common	alternative-resource	qualifiers
Providing	default	resources
Related	practical
Learn	more

An	adaptive	layout	is	a	layout	that	works	well	for	different	screen	sizes	and	orientations,	different	devices,	different	locales
and	languages,	and	different	versions	of	Android.

In	this	chapter	you	learn	how	to	create	an	adaptive	layout	by	externalizing	and	grouping	resources,	providing	alternative
resources,	and	providing	default	resources	in	your	app.

Externalizing	resources
When	you	externalize	resources,	you	keep	them	separate	from	your	application	code.	For	example,	instead	of	hard-coding
a	string	into	your	code,	you	name	the	string	and	add	it	to	the	res/values/strings.xml	file.

Always	externalize	resources	such	as	drawables,	icons,	layouts,	and	strings.	Here's	why	it's	important:

You	can	maintain	externalized	resources	separately	from	your	other	code.	If	a	resource	is	used	in	several	places	in
your	code	and	you	need	to	change	the	resource,	you	only	need	to	change	it	in	one	place.
You	can	provide	alternative	resources	that	support	specific	device	configurations,	for	example	devices	with	different
languages	or	screen	sizes.	This	becomes	increasingly	important	as	more	Android-powered	devices	become	available.

Grouping	resources
Store	all	your	resources	in	the	res/	folder.	Organize	resources	by	type	into	folders	under	/res.	You	must	use	standardized
names	for	these	folders.

5.3:	Providing	Resources	for	Adaptive	Layouts

248

For	example,	the	screenshot	below	shows	the	file	hierarchy	for	a	small	project,	as	seen	in	the	"Android"	Project	view	in
Android	Studio.	The	folders	that	contain	this	project's	default	resources	use	standardized	names:		drawable	,		layout	,

	menu	,		mipmap		(for	icons),	and		values	.	

Table	1	lists	the	standard	resource	folder	names.	The	types	are	described	more	fully	in	the	Providing	Resources	guide.

Table	1:	Standard	Resource	Folder	Names

Name Resource	Type

animator/ XML	files	that	define	property	animations.

anim/ XML	files	that	define	tween	animations.

color/ XML	files	that	define	"state	lists"	of	colors.	(This	is	different	from	the	colors.xml	file	in	the	values/	folder.)
See	Color	State	List	Resource.

drawable/ Bitmap	files	(WebP,	PNG,	9-patch,	JPG,	GIF)	and	XML	files	that	are	compiled	into	drawables.	See
Drawable	Resources.

mipmap/ Drawable	files	for	different	launcher	icon	densities.	See	Projects	Overview.

layout/ XML	files	that	define	user	interface	layouts.	See	Layout	Resource.

menu/ XML	files	that	define	application	menus.	See	Menu	Resource.

raw/

Arbitrary	files	saved	in	raw	form.	To	open	these	resources	with	a	raw	InputStream,	call
Resources.openRawResource()	with	the	resource	ID,	which	is		R.raw.filename	.	If	you	need	access	to
original	file	names	and	file	hierarchy,	consider	saving	resources	in	the	assets/	folder	instead	of
res/raw/.	Files	in	assets/	are	not	given	a	resource	ID,	so	you	can	read	them	only	using	AssetManager.

values/

XML	files	that	contain	simple	values,	such	as	strings,	integers,	and	colors.	For	clarity,	place	unique
resource	types	in	different	files.	For	example,	here	are	some	filename	conventions	for	resources	you
can	create	in	this	folder:

arrays.xml	for	resource	arrays	(typed	arrays)
dimens.xml	for	dimension	values
strings.xml,	colors.xml,	styles.xml

See	String	Resources,	Style	Resource,	and	More	Resource	Types.

xml/
Arbitrary	XML	files	that	can	be	read	at	runtime	by	calling	Resources.getXml().	Various	XML
configuration	files,	such	as	a	searchable	configuration,	must	be	saved	here,	along	with	preference
settings.

5.3:	Providing	Resources	for	Adaptive	Layouts

249

https://developer.android.com/guide/topics/resources/providing-resources.html
https://developer.android.com/guide/topics/graphics/prop-animation.html
https://developer.android.com/guide/topics/graphics/view-animation.html#tween-animation
https://developer.android.com/guide/topics/resources/color-list-resource.html
https://developer.android.com/guide/topics/resources/drawable-resource.html
https://developer.android.com/tools/projects/index.html#mipmap
https://developer.android.com/guide/topics/resources/layout-resource.html
https://developer.android.com/guide/topics/resources/menu-resource.html
https://developer.android.com/reference/java/io/InputStream.html
https://developer.android.com/reference/android/content/res/Resources.html#openRawResource(int)
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/guide/topics/resources/string-resource.html
https://developer.android.com/guide/topics/resources/style-resource.html
https://developer.android.com/guide/topics/resources/more-resources.html
https://developer.android.com/reference/android/content/res/Resources.html#getXml(int)
https://developer.android.com/guide/topics/search/searchable-config.html
https://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs

Alternative	resources
Most	apps	provide	alternative	resources	to	support	specific	device	configurations.	For	example,	your	app	should	include
alternative	drawable	resources	for	different	screen	densities,	and	alternative	string	resources	for	different	languages.	At
runtime,	Android	detects	the	current	device	configuration	and	loads	the	appropriate	resources.

If	no	resources	are	available	for	the	device's	specific	configuration,	Android	uses	the	default	resources	that	you	include	in
your	app—the	default	drawables,	which	are	in	the	res/drawable/	folder,	the	default	text	strings,	which	are	in	the
res/values/strings.xml	file,	and	so	on.

Like	default	resources,	alternative	resources	are	kept	in	folders	inside	res/.	Alternative-resource	folders	use	the	following
naming	convention:

<resource_name>-<config_qualifier>

	<resource_name>		is	the	folder	name	for	this	type	of	resource,	as	shown	in	Table	1.	For	example,	"drawable"	or"
values".
	<config_qualifier>		specifies	a	device	configuration	for	which	these	resources	are	used.	The	possible	qualifiers	are
shown	in	Table	2.

To	add	multiple	qualifiers	to	one	folder	name,	separate	the	qualifiers	with	a	dash.	If	you	use	multiple	qualifiers	for	a
resource	folder,	you	must	list	them	in	the	order	they	are	listed	in	Table	2.

Examples	with	one	qualifier:

String	resources	localized	to	Japanese	would	be	in	a		res/values-ja/strings.xml	file.	Default	string	resources
(resources	to	be	used	when	no	language-specific	resources	are	found)	would	be	in		res/values/strings.xml	.	Notice
that	the	XML	files	have	identical	names,	in	this	case	"strings.xml".
Style	resources	for	API	level	21	and	higher	would	be	in	a		res/values-v21/styles.xml		file.	Default	style	resources
would	be	in		res/values/styles.xml	.

Example	with	multiple	qualifiers:

Layout	resources	for	a	right-to-left	layout	running	in	"night"	mode	would	be	in	a		res/layout-ldrtl-night/		folder.

In	the	"Android"	view	in	Android	Studio,	the	qualifier	is	not	appended	to	the	end	of	the	folder.	Instead,	the	qualifier	is	shown
as	a	label	on	the	right	side	of	the	file	in	parentheses.	For	example,	in	the	"Android"	view	shown	below,	the
	res/values/dimens.xml/		folder	shows	two	files:

The		dimens.xml		file,	which	includes	default	dimension	resources.
The		dimens.xml	(w820dp)		file,	which	includes	dimension	resources	for	devices	that	have	a	minimum	available	screen
width	of	820dp.

5.3:	Providing	Resources	for	Adaptive	Layouts

250

1.	 In	the	"Android"	view	in	Android	Studio,	default	resources	for	dimensions	are	shown	in	the	same	folder	as	alternative
resources	for	dimensions.

In	the	"Project"	view	in	Android	Studio,	the	same	information	is	presented	differently,	as	shown	in	the	screenshot	below.	

1.	 In	the	"Project"	view	in	Android	Studio,	default	resources	for	dimensions	are	shown	in	the		res/values		folder.
2.	 Alternative	resources	for	dimensions	are	shown	in		res/values-<qualifier>		folders.

Table	2	shows	the	configuration	qualifiers	that	Android	supports.	They	are	listed	in	the	order	you	must	use	when	you
combine	multiple	qualifiers	in	one	folder	name.	For	example	in		res/layout-ldrtl-night/	,	the	qualifier	for	layout	direction	is
listed	before	the	qualifier	for	night	mode,	because	layout	direction	is	listed	before	night	mode	in	the	table.

These	qualifiers	are	described	in	detail	in	Providing	Alternative	Resources.

Table	2:	Qualifiers	for	Naming	Alternative	Resources

Precedence Qualifier Description

1 MCC	and
MNC

The	mobile	country	code	(MCC),	optionally	followed	by	mobile	network	code
(MNC)	from	the	SIM	card	in	the	device.	For	example,		mcc310		is	U.S.	on	any
carrier,		mcc310-mnc004		is	U.S.	on	Verizon,	and		mcc208-mnc00		is	France	on
Orange.

2 Localization Language,	or	language	and	region.	Examples:		en	,		en-rUS	,		fr-rFR	,		fr-rCA	.
Described	in	Localization,	below.

5.3:	Providing	Resources	for	Adaptive	Layouts

251

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

3 Layout
direction

The	layout	direction	of	your	application.	Possible	values	include		ldltr		(layout
direction	left-to-right,	which	is	the	default)	and		ldrtl		(layout	direction	right-to-
left).

To	enable	right-to-left	layout	features,	set	supportsRtl	to		"true"		and	set
targetSdkVersion	to	17	or	higher.

4 Smallest
width

Fundamental	screen	size	as	indicated	by	the	shortest	dimension	of	the	available
screen	area.	Example:		sw320dp	.	Described	in	Smallest	width,	below.

5 Available
width

Minimum	available	screen	width	at	which	the	resource	should	be	used.	Specified
in	dp	units.	The	format	is		wdp	,	for	example,		w720dp		and		w1024dp	.

6 Available
height

Minimum	available	screen	height	at	which	the	resource	should	be	used.	Specified
in	dp	units.	The	format	is		hdp	,	for	example,		h720dp		and		h1024dp	.

7 Screen	size

Possible	values:

	small:		Screens	such	as	QVGA	low-density	screens
	normal:		Screens	such	as	HVGA	medium-density
	large:		Screens	such	as	VGA	medium-density
	xlarge:		Screens	such	as	those	on	tablet-style	devices

8 Screen
aspect

Possible	values	include		long		(for	screens	such	as	WQVGA,	WVGA,	FWVGA)
and		notlong		(for	screens	such	as	QVGA,	HVGA,	and	VGA).

9 Round
screen

Possible	values	include		round		(for	screens	such	as	those	on	round	wearable
devices)	and		notround		(for	rectangular	screens	such	as	phones).

10 Screen
orientation Possible	values:		port,	land.		Described	in	Screen	orientation,	below.

11 UI	mode

Possible	values:

	car:		Device	is	displaying	in	a	car	dock
	desk:		Displaying	in	a	desk	dock
	television:		Displaying	on	a	large	screen	that	the	user	is	far	away	from,
primarily	oriented	around	D-pad	or	other	non-pointer	interaction
	appliance:		Device	is	serving	as	an	appliance,	with	no	display
	watch:		Device	has	a	display	and	is	worn	on	the	wrist

12 Night	mode
Possible	values:

	night	

	notnight	

13 Screen	pixel
density

Possible	values:

	ldpi:		Low-density	screens;	approximately	120dpi.
	mdpi:		Medium-density	(on	traditional	HVGA)	screens;	approximately
160dpi.
	hdpi:		High-density	screens;	approximately	240dpi.
	xhdpi:		Approximately	320dpi.	Added	in	API	level	8.
	xxhdpi:		Approximately	480dpi.	Added	in	API	level	16.
	xxxhdpi:		Launcher	icon	only;	approximately	640dpi.	Added	in	API	level	18.
	nodpi:		For	bitmap	resources	that	you	don't	want	scaled	to	match	the	device
density.
	tvdpi:		Screens	between	mdpi	and	hdpi;	approximately	213dpi.	Intended	for
televisions,	and	most	apps	shouldn't	need	it.	Added	in	API	level	13.
	anydpi:		Matches	all	screen	densities	and	takes	precedence	over	other
qualifiers.	Useful	for	vector	drawables.	Added	in	API	level	21.

Note:	Using	a	density	qualifier	doesn't	imply	that	the	resources	are	only	for
screens	of	that	density.	If	you	don't	provide	alternative	resources	with	qualifiers
that	better	match	the	current	device	configuration,	the	system	may	use	whichever
resources	are	the	best	match.

5.3:	Providing	Resources	for	Adaptive	Layouts

252

https://developer.android.com/guide/topics/manifest/application-element.html#supportsrtl
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#target
https://developer.android.com/training/material/drawables.html#VectorDrawables
https://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch

14 Touchscreen
type

Possible	values	include		notouch		(device	doesn't	have	a	touchscreen)	and
	finger		(device	has	a	touchscreen).

15 Keyboard
availability

Possible	values:

	keysexposed:		Device	has	a	keyboard	available.
	keyshidden:		Device	has	a	hardware	keyboard	available	but	it's	hidden,	and
the	device	does	not	have	a	software	keyboard	enabled.
	keyssoft:		Device	has	a	software	keyboard	enabled,	whether	it's	visible	or
not.

16
Primary	text
input
method

Possible	values:

	nokeys:		Device	has	no	hardware	keys	for	text	input.
	qwerty:		Device	has	a	hardware	qwerty	keyboard,	whether	it's	visible	to	the
user	or	not.
	12key:		Device	has	a	hardware	12-key	keyboard,	whether	it's	visible	to	the
user	or	not.

17
Navigation
key
availability

Possible	values	include		navexposed		(navigation	keys	are	available	to	the	user)
and		navhidden		(navigation	keys	are	not	available,	for	example	they're	behind	a
closed	lid).

18

Primary	non-
touch
navigation
method

Possible	values:

	nonav:		Device	has	no	navigation	facility	other	than	the	touchscreen.
	dpad:		Device	has	a	directional-pad	(D-pad).
	trackball:		Device	has	a	trackball.
	wheel:		Device	has	a	directional	wheel	for	navigation	(uncommon).

19
Platform
version	(API
level)

The	API	level	supported	by	the	device.	Described	in	Platform	version,	below.

Creating	alternative	resources
To	create	alternative	resource	folders	most	easily	in	Android	Studio,	use	the	"Android"	view	in	the	Project	tool	window.	

1.	 Selecting	the	"Android"	view	in	Android	Studio.	If	you	don't	see	these	options,	make	sure	the	Project	tool	window	is
visible	by	selecting	View	>	Tool	Windows	>	Project.

To	use	Android	Studio	to	create	a	new	configuration-specific	alternative	resource	folder	in	res/:

1.	 Be	sure	you	are	using	the	"Android"	view,	as	shown	above.
2.	 Right-click	on	the	res/	folder	and	select	New	>	Android	resource	directory.	The	New	Resource	Directory	dialog	box

5.3:	Providing	Resources	for	Adaptive	Layouts

253

appears.	
3.	 Select	the	type	of	resource	(described	in	Table	1)	and	the	qualifiers	(described	in	Table	2)	that	apply	to	this	set	of

alternative	resources.
4.	 Click	OK.

If	you	can't	see	the	new	folder	in	the	Project	tool	window	in	Android	Studio,	switch	to	the	"Project"	view,	as	shown	in	the
screenshot	below.	If	you	don't	see	these	options,	make	sure	the	Project	tool	window	is	visible	by	selecting	View	>	Tool

Windows	>	Project.	

Save	alternative	resources	in	the	new	folder.	The	alternative	resource	files	must	be	named	exactly	the	same	as	the	default
resource	files,	for	example	"styles.xml"	or	"dimens.xml".

For	the	complete	documentation	about	alternative	resources,	see	Providing	Alternative	Resources.

Common	alternative-resource	qualifiers
This	section	describes	a	few	commonly	used	qualifiers.	Table	2	gives	the	complete	list.

5.3:	Providing	Resources	for	Adaptive	Layouts

254

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Screen	orientation

The	screen-orientation	qualifier	has	two	possible	values:

	port	:	The	device	is	in	portrait	mode	(vertical).	For	example,		res/layout-port/		would	contain	layout	files	to	use	when
the	device	is	in	portrait	mode.
	land	:	The	device	is	in	landscape	mode	(horizontal).	For	example,		res/layout-land/		would	contain	layout	files	to	use
when	the	device	is	in	landscape	mode.

If	the	user	rotates	the	screen	while	your	app	is	running,	and	if	alternative	resources	are	available,	Android	automatically
reloads	your	app	with	alternative	resources	that	match	the	new	device	configuration.	For	information	about	controlling	how
your	app	behaves	during	a	configuration	change,	see	Handling	Runtime	Changes.

To	create	variants	of	your	layout	XML	file	for	landscape	orientation	and	larger	displays,	use	the	layout	editor.	To	use	the
layout	editor:

1.	 In	Android	Studio,	open	the	XML	file.	The	layout	editor	appears.
2.	 From	the	drop-down	menu	in	the	Layout	Variants	menu,	choose	an	option	such	as	Create	Landscape	Variant.	The

Layout	Variants	menu,	which	is	visible	when	an	XML	file	is	open	in	Android	Studio,	is	highlighted	in	the	screenshot
below.	

A	layout	for	a	different	landscape	orientation	appears,	and	a	new	XML	file	is	created	for	you.	For	example,	you	might	now
have	a	file	named	"activity_main.xml	(land)"	along	with	your	original	"activity_main.xml"	file.	You	can	use	the	editor	to
change	the	new	layout	without	changing	the	original	layout.

See	the	previous	practical	about	layouts	for	an	example	of	layout	design.

Smallest	width
The	smallest-width	qualifier	specifies	the	minimum	width	of	the	device.	It	is	the	shortest	of	the	screen's	available	height	and
width,	the	"smallest	possible	width"	for	the	screen.	The	smallest	width	is	a	fixed	screen-size	characteristic	of	the	device,
and	it	does	not	change	when	the	screen's	orientation	changes.

Specify	smallest	width	in	dp	units,	using	the	following	format:

sw<N>dp

where		<N>		is	the	minimum	width.	For	example,	resources	in	a	file	named		res/values-sw320dp/styles.xml		are	used	if	the
device's	screen	is	always	at	least	320dp	wide.

5.3:	Providing	Resources	for	Adaptive	Layouts

255

https://developer.android.com/guide/topics/resources/runtime-changes.html

You	can	use	this	qualifier	to	ensure	that	a	certain	layout	won't	be	used	unless	it	has	at	least		<N>		dps	of	width	available	to
it,	regardless	of	the	screen's	current	orientation.

Some	values	for	common	screen	sizes:

320,	for	devices	with	screen	configurations	such	as
240x320	ldpi	(QVGA	handset)
320x480	mdpi	(handset)
480x800	hdpi	(high-density	handset)

480,	for	screens	such	as	480x800	mdpi	(tablet/handset)
600,	for	screens	such	as	600x1024	mdpi	(7"	tablet)
720,	for	screens	such	as	720x1280	mdpi	(10"	tablet)

When	your	application	provides	multiple	resource	folders	with	different	values	for	the	smallest-width	qualifier,	the	system
uses	the	one	closest	to	(without	exceeding)	the	device's	smallest	width.

Example:

	res/values-sw600dp/dimens.xml		contains	dimensions	for	images.	When	the	app	runs	on	a	device	with	a	smallest	width	of
600dp	or	higher	(such	as	a	tablet),	Android	uses	the	images	in	this	folder.

Platform	version

The	platform-version	qualifier	specifies	the	minimum	API	level	supported	by	the	device.	For	example,	use		v11		for	API
level	11	(devices	with	Android	3.0	or	higher).	See	the	Android	API	levels	document	for	more	information	about	these
values.

Use	the	platform-version	qualifier	when	you	use	resources	for	functionality	that's	unavailable	in	prior	versions	of	Android.

For	example,	WebP	images	require	API	level	14	(Android	4.0)	or	higher,	and	for	full	support	they	require	API	level	17
(Android	4.2)	or	higher.	If	you	use	WebP	images:

Put	default	versions	of	the	images	in	a		res/drawable		folder.	These	images	must	use	an	image	format	that's	supported
for	all	API	levels,	for	example	PNG.
Put	WebP	versions	of	the	images	in	a		res/drawable-v17		folder.	If	the	device	uses	API	level	17	or	greater,	Android	will
select	these	resources	at	runtime.

Localization

The	localization	qualifier	specifies	a	language	and,	optionally,	a	region.	This	qualifier	is	a	two-letter	ISO	639-1	language
code,	optionally	followed	by	a	two	letter	ISO	3166-1-alpha-2	region	code	(preceded	by	lowercase		r).

You	can	specify	a	language	alone,	but	not	a	region	alone.	Examples:

	res/values-fr-rFR/strings.xml	

Strings	in	this	file	are	used	on	devices	that	are	configured	for	the	French	language	and	have	their	region	set	to	France.

	res/mipmap-fr-rCA/	

Icons	in	this	folder	are	used	on	devices	that	are	configured	for	the	French	language	and	have	their	region	set	to
Canada.

	res/layout-ja/content_main.xml	

This	layout	is	used	on	devices	that	are	configured	for	the	Japanese	language.

If	the	user	changes	the	language	or	region	in	the	device's	system	settings	while	your	app	is	running,	and	if	alternative
resources	are	available,	Android	automatically	reloads	your	app	with	alternative	resources	that	match	the	new	device
configuration.	For	information	about	controlling	how	your	app	behaves	during	a	configuration	change,	see	Handling
Runtime	Changes.

5.3:	Providing	Resources	for	Adaptive	Layouts

256

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
https://developer.android.com/guide/topics/resources/runtime-changes.html

For	a	full	guide	on	localization,	see	Localizing	with	Resources.

Providing	default	resources
Default	resources	specify	the	default	design	and	content	for	your	application.	For	example,	when	the	app	runs	in	a	locale
for	which	you	have	not	provided	locale-specific	text,	Android	loads	the	default	strings	from	res/values/strings.xml.	If	this
default	file	is	absent,	or	if	it	is	missing	even	one	string	that	your	application	needs,	then	your	app	doesn't	run	and	shows	an
error.

Default	resources	have	standard	resource	folder	names	(values	,	for	example)	without	any	qualifiers	in	the	folder	name	or

in	parentheses	after	the	file	names.	

1.	 Default	resources
Tip:	Always	provide	default	resources,	because	your	app	might	run	on	a	device	configuration	that	you	don't	anticipate.

Sometimes	new	versions	of	Android	add	configuration	qualifiers	that	older	versions	don't	support.	If	you	use	a	new
resource	qualifier	and	maintain	code	compatibility	with	older	versions	of	Android,	then	when	an	older	version	of	Android
runs	your	app,	the	app	crashes	unless	default	resources	are	available.	This	is	because	the	older	version	of	Android	can't
use	the	alternative	resources	that	are	named	with	the	new	qualifier.

For	example,	assume	your		minSdkVersion		is	set	to		4		and	you	qualify	all	your	drawable	resources	using	night	mode,
meaning	that	you	put	all	your	drawable	resources	in		res/drawable-night/		and		res/drawable-notnight/	.	In	this	example:

When	an	API	level	4	device	runs	the	app,	the	device	can't	access	your	drawable	resources.	The	Android	version
doesn't	know	about		night		and		notnight	,	because	these	qualifiers	weren't	added	until	API	level	8.	The	app	crashes,
because	it	doesn't	include	any	default	resources	to	fall	back	on.

In	this	example,	you	probably	want		notnight		to	be	your	default	case.	To	solve	the	problem,	exclude	the		notnight		qualifier
and	put	your	drawable	resources	in		res/drawable/		and		res/drawable-night/	.	With	this	solution:

When	an	API	level	4	device	runs	the	app,	it	always	uses	the	resources	in	the	default		res/drawable/		folder.
When	a	device	at	API	level	8	or	above	uses	the	app,	it	uses	the	resources	in	the		res/drawable-night/		folder	whenever
the	device	is	in	night	mode.	At	all	other	times,	it	uses	the	default	(notnight)	resources.

To	provide	the	best	device	compatibility,	provide	default	resources	for	every	resource	that	your	application	needs.	After	your
default	resources	are	in	place,	create	alternative	resources	for	specific	device	configurations	using	the	alternative-resource
configuration	qualifiers	shown	in	Table	2.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Supporting	Landscape,	Multiple	Screen	Sizes	and	Localization

Learn	more
Providing	Resources
Resources	Overview

5.3:	Providing	Resources	for	Adaptive	Layouts

257

https://developer.android.com/guide/topics/resources/localization.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#min
https://developer.android.com/guide/topics/resources/providing-resources.html#NightQualifier
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/53_p_support_landscape.html
https://developer.android.com/guide/topics/resources/providing-resources.html
https://developer.android.com/guide/topics/resources/overview.html

Localizing	with	Resources

5.3:	Providing	Resources	for	Adaptive	Layouts

258

https://developer.android.com/guide/topics/resources/localization.html

6.1:	Testing	the	User	Interface
Contents:

Properly	testing	a	user	interface
Setting	up	your	test	environment
Using	Espresso	for	tests	that	span	a	single	app
Using	UI	Automator	for	tests	that	span	multiple	apps
Related	practical
Learn	more

Properly	testing	a	user	interface
Writing	and	running	tests	are	important	parts	of	the	Android	app	development	cycle.	Well-written	tests	can	help	you	catch
bugs	early	in	your	development	cycle,	where	they	are	easier	to	fix,	and	helps	give	you	confidence	in	your	code.

User	interface	(UI)	testing	focuses	on	testing	aspects	of	the	user	interface	and	interactions	with	users.	Recognizing	and
acting	on	user	input	is	a	high	priority	in	user	interface	testing	and	validation.	You	need	to	make	sure	that	your	app	not	only
recognizes	the	type	of	input	but	also	acts	accordingly.	As	a	developer,	you	should	get	into	the	habit	of	testing	user
interactions	to	ensure	that	users	don't	encounter	unexpected	results	or	have	a	poor	experience	when	interacting	with	your
app.	User	interface	testing	can	help	you	recognize	the	input	controls	where	unexpected	input	should	be	handled	gracefully
or	should	trigger	input	validation.

Note:	We	strongly	encourage	you	to	use	Android	Studio	for	building	your	test	apps,	because	it	provides	project	setup,
library	inclusion,	and	packaging	conveniences.	You	can	run	UI	tests	on	a	variety	of	physical	or	virtual	Android	devices,	and
you	can	then	analyze	the	results	and	make	changes	to	your	code	without	leaving	the	development	environment.
The	UI	contains	views	with	graphical	elements	such	as	buttons,	menus,	and	text	fields,	each	with	a	set	of	properties.	To
properly	test	the	UI,	you	need	to:

Exercise	all	UI	events	with	views:
Tap	a	UI	view,	and	enter	data	or	make	a	choice.
Examine	the	values	of	the	properties	of	each	view—referred	to	as	the	state	of	the	UI—at	different	times	during
execution.

Provide	inputs	to	all	UI	views.	Use	this	opportunity	to	test	improper	inputs,	such	as	text	when	numbers	are	expected.
Check	the	outputs	and	UI	representations	of	data—such	as	strings	and	integers—to	see	if	they	are	consistent	with
what	you	are	expecting.

In	addition	to	functionality,	UI	testing	evaluates	design	elements	such	as	layout,	colors,	fonts,	font	sizes,	labels,	text	boxes,
text	formatting,	captions,	buttons,	lists,	icons,	links,	and	content.

Manual	Testing

As	the	developer	of	an	app,	you	probably	test	each	UI	component	manually	as	you	add	the	component	to	the	app's	UI.	As
development	continues,	one	approach	to	UI	testing	is	to	simply	have	a	human	tester	perform	a	set	of	user	operations	on
the	target	app	and	verify	that	it	is	behaving	correctly.

However,	this	manual	approach	can	be	time-consuming,	tedious,	and	error-prone.	By	manually	testing	a	UI	for	a	complex
app,	you	can't	possibly	cover	all	permutations	of	user	interactions.	You	would	also	have	to	manually	perform	these
repetitive	tests	on	many	different	device	configurations	in	an	emulator,	and	on	many	different	devices.	To	summarize,	the
problems	inherent	with	manual	testing	fall	into	two	categories:

Domain	size:	A	UI	has	a	great	deal	of	operations	that	need	testing.	Even	a	relatively	small	app	can	have	hundreds	of
possible	UI	operations.	Over	a	development	cycle	a	UI	may	change	significantly,	even	though	the	underlying	app
doesn't	change.	Manual	tests	with	instructions	to	follow	a	certain	path	through	the	UI	may	fail	over	time,	because	a

6.1:	Testing	the	User	Interface

259

button,	menu	item,	or	dialog	may	have	changed	location	or	appearance.
Sequences:	Some	functionality	of	the	app	may	only	be	accomplished	with	a	sequence	of	UI	events.	For	example,	to
add	an	image	to	a	message	about	to	be	sent,	a	user	may	have	to	tap	a	camera	button	and	use	the	camera	to	take	a
picture,	or	a	photo	button	to	select	an	existing	picture,	and	then	associate	that	picture	with	the	message—usually	by
tapping	a	share	or	send	button.	Increasing	the	number	of	possible	operations	also	increases	the	sequencing	problem.

Automated	testing

When	you	automate	tests	of	user	interactions,	you	free	yourself	and	your	resources	for	other	work.	To	generate	a	set	of	test
cases,	test	designers	attempt	to	cover	all	of	the	functionality	of	the	system	and	fully	exercise	the	UI.	Performing	all	of	the	UI
interactions	automatically	makes	it	easier	to	run	tests	for	different	device	states	(such	as	orientations)	and	different
configurations.

For	testing	Android	apps,	you	typically	create	these	types	of	automated	UI	tests:

UI	tests	that	work	within	a	single	app:	Verifies	that	the	app	behaves	as	expected	when	a	user	performs	a	specific
action	or	enters	a	specific	input.	It	allows	you	to	check	that	the	app	returns	the	correct	UI	output	in	response	to	user
interactions	in	the	app's	activities.	UI	testing	frameworks	like	Espresso	allow	you	to	programmatically	simulate	user
actions	and	test	complex	intra-app	user	interactions.
UI	tests	that	span	multiple	apps:	Verifies	the	correct	behavior	of	interactions	between	different	user	apps	or	between
user	apps	and	system	apps.	For	example,	you	can	test	an	app	that	launches	the	Maps	app	to	show	directions,	or	that
launches	the	Android	contact	picker	to	select	recipients	for	a	message.	UI	testing	frameworks	that	support	cross-app
interactions,	such	as	UI	Automator,	allow	you	to	create	tests	for	such	user-driven	scenarios.

Using	Espresso	for	tests	that	span	a	single	app
The	Espresso	testing	framework	in	the	Android	Testing	Support	Library	provides	APIs	for	writing	UI	tests	to	simulate	user
interactions	within	a	single	app.	Espresso	tests	run	on	actual	device	or	emulator	and	behave	as	if	an	actual	user	is	using
the	app.

You	can	use	Espresso	to	create	UI	tests	to	automatically	verify	the	following:

The	app	returns	the	correct	UI	output	in	response	to	a	sequence	of	user	actions	on	a	device.
The	app's	navigation	and	input	controls	bring	up	the	correct	activities,	views,	and	fields.
The	app	responds	correctly	with	mocked-up	dependencies,	such	as	data	from	an	outside	server,	or	can	work	with
stubbed	out	backend	methods	to	simulate	real	interactions	with	backend	components	which	can	be	programmed	to
reply	with	a	set	of	defined	responses.

A	key	benefit	of	using	Espresso	is	that	it	has	access	to	instrumentation	information,	such	as	the	context	for	the	app,	so	that
you	can	monitor	all	of	the	interaction	the	Android	system	has	with	the	app.	Another	key	benefit	is	that	it	automatically
synchronizes	test	actions	with	the	app's	UI.	Espresso	detects	when	the	main	thread	is	idle,	so	it	is	able	to	run	your	test	at
the	appropriate	time,	improving	the	reliability	of	your	tests.	This	capability	also	relieves	you	from	having	to	add	any	timing
workarounds,	such	as	a	sleep	period,	in	your	test	code.

The	Espresso	testing	framework	works	with	the	AndroidJUnitRunner	test	runner	and	requires	instrumentation,	which	is
described	later	in	this	section.	Espresso	tests	can	run	on	devices	running	Android	2.2	(API	level	8)	and	higher.

Using	UI	Automator	for	tests	that	span	multiple	apps

The	UI	Automator	testing	framework	in	the	Android	Testing	Support	Library	can	help	you	verify	the	correct	behavior	of
interactions	between	different	user	apps	or	between	user	apps	and	system	apps.	It	can	also	show	you	what	is	happening
on	the	device	before	and	after	an	app	is	launched.

The	UI	Automator	APIs	let	you	interact	with	visible	elements	on	a	device.	Your	test	can	look	up	a	UI	component	by	using
descriptors	such	as	the	text	displayed	in	that	component	or	its	content	description.	A	viewer	tool	provides	a	visual	interface
to	inspect	the	layout	hierarchy	and	view	the	properties	of	UI	components	that	are	visible	on	the	foreground	of	the	device.

6.1:	Testing	the	User	Interface

260

https://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html

The	following	are	important	functions	of	UI	Automator:

Like	Espresso,	UI	Automator	has	access	to	system	interaction	information	so	that	you	can	monitor	all	of	the	interaction
the	Android	system	has	with	the	app.
Your	test	can	send	an	Intent	or	launch	an	Activity	(without	using	shell	commands)	by	getting	a	Context	object	through
getContext().
You	can	simulate	user	interactions	on	a	collection	of	items,	such	as	songs	in	a	music	album	or	a	list	of	emails	in	an
inbox.
You	can	simulate	vertical	or	horizontal	scrolling	across	a	display.
You	can	use	standard	JUnit	Assert	methods	to	test	that	UI	components	in	the	app	return	the	expected	results.

The	UI	Automator	testing	framework	works	with	the	AndroidJUnitRunner	test	runner	and	requires	instrumentation,	which	is
described	in	the	next	section.	UI	Automator	tests	can	run	on	devices	running	Android	4.3	(API	level	18)	or	higher.

What	is	instrumentation?
Android	instrumentation	is	a	set	of	control	methods,	or	hooks,	in	the	Android	system,	which	control	Android	components
and	how	the	Android	system	loads	apps.

Normally	the	system	runs	all	the	components	of	an	app	in	the	same	process.	You	can	allow	some	components,	such	as
content	providers,	to	run	in	a	separate	process,	but	you	typically	can't	force	an	app	onto	the	same	process	as	another
running	app.

Instrumentation	tests,	however,	can	load	both	a	test	package	and	the	app	into	the	same	process.	Since	the	app
components	and	their	tests	are	in	the	same	process,	your	tests	can	invoke	methods	in	the	components,	and	modify	and
examine	fields	in	the	components.

Instrumentation	allows	you	to	monitor	all	of	the	interaction	the	Android	system	has	with	the	application,	and	makes	it
possible	for	tests	to	invoke	methods	in	the	app,	and	modify	and	examine	fields	in	the	app,	independently	of	the	app's
normal	lifecycle.

Normally,	an	Android	component	runs	in	a	lifecycle	that	the	system	determines.	For	example,	an	Activity	object's	lifecycle
starts	when	an	Intent	activates	the	Activity.	The	system	calls	the	object's	onCreate()	method,	and	then	the	onResume()
method.	When	the	user	starts	another	app,	the	system	calls	the	onPause()	method.	If	the	Activity	code	calls	the	finish()
method,	the	system	calls	the	onDestroy()	method.

The	Android	framework	API	does	not	provide	a	way	for	your	app's	code	to	invoke	these	callback	methods	directly,	but	you
can	do	so	using	an	Espresso	or	UI	Automator	test	with	instrumentation.

Setting	up	your	test	environment
To	use	the	Espresso	and	UI	Automator	frameworks,	you	need	to	store	the	source	files	for	instrumented	tests	at	module-
name/src/androidTests/java/.	This	directory	already	exists	when	you	create	a	new	Android	Studio	project.	In	the	Project
view	of	Android	Studio,	this	directory	is	shown	in	app	>	java	as	module-name	(androidTest).

You	also	need	to	do	the	following:

Install	the	Android	Support	Repository	and	the	Android	Testing	Support	Library.
Add	dependencies	to	the	project's	build.gradle	file.
Create	test	files	in	the	androidTest	directory.

Installing	the	Android	Support	Repository	and	Testing	Support	Library
You	may	already	have	the	Android	Support	Repository	and	its	Android	Testing	Support	Library	installed	with	Android
Studio.	To	check	for	the	Android	Support	Repository,	follow	these	steps:

1.	 In	Android	Studio	choose	Tools	>	Android	>	SDK	Manager.
2.	 Click	the	SDK	Tools	tab,	and	look	for	the	Support	Repository.

6.1:	Testing	the	User	Interface

261

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/support/test/InstrumentationRegistry.html#getContext()
http://junit.org/javadoc/latest/org/junit/Assert.html
https://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html

3.	 If	necessary,	update	or	install	the	library.

Adding	the	dependencies

When	you	start	a	project	for	the	Phone	and	Tablet	form	factor	using	API	15:	Android	4.0.3	(Ice	Cream	Sandwich)	as	the
minimum	SDK,	Android	Studio	version	2.2	and	newer	automatically	includes	the	dependencies	you	need	to	use	Espresso.
To	ensure	that	you	have	these	dependencies,	follow	these	steps:

1.	 Open	the	build.gradle	(Module:	app)	file	in	your	project	to	make	sure	the	following	is	included	(along	with	other
dependencies)	in	the		dependencies		section	of	your	build.gradle	(Module:	app)	file:

androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2',	{

								exclude	group:	'com.android.support',	module:	'support-annotations'

				})

testCompile	'junit:junit:4.12'

2.	 Android	Studio	also	adds	the	following	instrumentation	statement	to	the	end	of	the		defaultConfig		section:

testInstrumentationRunner	"android.support.test.runner.AndroidJUnitRunner"

Note:	If	you	created	your	project	in	a	previous	version	of	Android	Studio,	you	may	have	to	add	the	above
dependencies	and	instrumentation	statement	yourself.

1.	 When	finished,	click	the	Sync	Now	link	in	the	notification	about	Gradle	files	in	top	right	corner	of	the	window.

Setting	up	the	test	rules	and	annotations

To	write	tests,	Espresso	and	UI	Automator	use	JUnit	as	their	testing	framework.	JUnit	is	the	most	popular	and	widely-used
unit	testing	framework	for	Java.	Your	test	class	using	Espresso	or	UI	Automator	should	be	written	as	a	JUnit	4	test	class.	If
you	do	not	have	JUnit,	you	can	get	it	at	http://junit.org/junit4/.

Note:	The	most	current	JUnit	revision	is	JUnit	5.	However	for	the	purposes	of	using	Espresso	or	UI	Automator,	version	4.12
is	recommended.
To	create	a	basic	JUnit	4	test	class,	create	a	Java	class	for	testing	in	the	directory	specified	at	the	beginning	of	this	section.
It	should	contain	one	or	more	methods	and	behavior	rules	defined	by	JUnit	annotations.

For	example,	the	following	snippet	shows	a	test	class	definition	with	annotations:

@RunWith(AndroidJUnit4.class)

public	class	RecyclerViewTest	{

			@Rule

			public	ActivityTestRule<MainActivity>	mActivityTestRule	=

												new	ActivityTestRule<>(MainActivity.class);

			@Test

			public	void	recyclerViewTest()	{

						...

			}

}

The	following	annotations	are	useful	for	testing:

@RunWith
To	create	an	instrumented	JUnit	4	test	class,	add	the		@RunWith(AndroidJUnit4.class)		annotation	at	the	beginning	of	your
test	class	definition,	which	indicates	the	runner	that	will	be	used	to	run	the	tests	in	this	class.	A	test	runner	is	a	library	or	set
of	tools	that	enables	testing	to	occur	and	the	results	to	be	printed	to	a	log.

@SmallTest,	@MediumTest,	and	@LargeTest

6.1:	Testing	the	User	Interface

262

http://junit.org/junit4/

The		@SmallTest	,		@MediumTest	,	and		@LargeTest		Android	annotations	provide	some	clarity	about	what	resources	and
features	the	test	uses.	For	example,	the		@SmallTest		annotation	tells	you	that	the	test	doesn't	interact	with	any	file	system
or	network.

The	following	summarizes	what	they	mean:

Feature Small Medium Large

Network	access No localhost	only Yes

Database No Yes Yes

File	system	access No Yes Yes

Use	external	systems No Discouraged Yes

Multiple	threads No Yes Yes

Sleep	statements No Yes Yes

System	properties No Yes Yes

Time	limit	(seconds) 60 300 900+

For	a	description	of	the	Android		@SmallTest	,		@MediumTest	,	and		@LargeTest		annotations,	see	"Test	Sizes"	in	the	Google
Testing	Blog.	For	a	summary	of	JUnit	annotations,	see	Package	org.junit.

@Rule

Before	declaring	the	test	methods,	use	the		@Rule		annotation,	such	as	ActivityTestRule	or	ServiceTestRule.	The		@Rule	
establishes	the	context	for	the	testing	code.	For	example:

@Rule

public	ActivityTestRule	mActivityRule	=	new	ActivityTestRule<>(

																					MainActivity.class);

This	rule	uses	an		ActivityTestRule		object,	which	provides	functional	testing	of	a	single	Activity—in	this	case,
	MainActivity.class	.

	ServiceTestRule		is	a	JUnit	rule	that	provides	a	simplified	mechanism	to	start	and	shutdown	your	service	before	and	after
the	duration	of	your	test.	It	also	guarantees	that	the	service	is	successfully	connected	when	starting	(or	binding	to)	a
service.

@Test

A	test	method	begins	with	the		@Test		annotation	and	contains	the	code	to	exercise	and	verify	a	single	function	in	the
component	that	you	want	to	test:

@Test

public	void	testActivityLaunch()	{	…	}

The	activity	under	test	will	be	launched	before	each	test	annotated	with		@Test	.	During	the	duration	of	the	test	you	will	be
able	to	manipulate	your	Activity	directly.

@Before	and	@After

6.1:	Testing	the	User	Interface

263

http://googletesting.blogspot.com/2010/12/test-sizes.html
http://junit.sourceforge.net/javadoc/org/junit/package-summary.html
https://developer.android.com/reference/android/support/test/rule/ActivityTestRule.html
https://developer.android.com/reference/android/support/test/rule/ServiceTestRule.html

In	certain	rare	cases	you	may	need	to	set	up	variables	or	execute	a	sequence	of	steps	before	or	after	performing	the	user
interface	test.	You	can	specify	methods	to	run	before	running	a		@Test		method,	using	the		@Before		annotation,	and
methods	to	run	after,	using	the		@After		annotation.

	@Before	:	The		@Test		method	will	execute	after	the	methods	designated	by	the		@Before		annotation.	The		@Before	
methods	terminate	prior	to	the	execution	of	the		@Test		method.

	@After	:	The		@Test		method	will	execute	before	the	methods	designated	by	the		@After		annotation.

Using	Espresso	for	tests	that	span	a	single	app
When	writing	tests	it	is	sometimes	difficult	to	get	the	balance	right	between	over-specifying	the	test	or	not	specifying
enough.	Over-specifying	the	test	can	make	it	brittle	to	changes,	while	under-specifying	may	make	the	test	less	valuable,
since	it	continues	to	pass	even	when	the	UI	element	and	its	code	under	test	is	broken.

To	make	tests	that	are	balanced,	it	helps	to	have	a	tool	that	allows	you	to	pick	out	precisely	the	aspect	under	test	and
describe	the	values	it	should	have.	Such	tests	fail	when	the	behavior	of	the	aspect	under	test	deviates	from	the	expected
behavior,	yet	continue	to	pass	when	minor,	unrelated	changes	to	the	behavior	are	made.	The	tool	available	for	Espresso	is
the	Hamcrest	framework.

Hamcrest	(an	anagram	of	"matchers")	is	a	framework	that	assists	writing	software	tests	in	Java.	The	framework	lets	you
create	custom	assertion	matchers,	allowing	match	rules	to	be	defined	declaratively.

Tip:	To	learn	more	about	Hamcrest,	see	The	Hamcrest	Tutorial.

Writing	Espresso	tests	with	Hamcrest	Matchers

You	write	Espresso	tests	based	on	what	a	user	might	do	while	interacting	with	your	app.	The	key	concepts	are	locating	and
then	interacting	with	UI	elements.	These	are	the	basic	steps:

1.	 Match	a	view:	Find	a	view.
2.	 Perform	an	action:	Perform	a	click	or	other	action	that	triggers	an	event	with	the	view.
3.	 Assert	and	verify	the	result:	Check	the	view's	state	to	see	if	it	reflects	the	expected	state	or	behavior	defined	by	the

assertion.

To	create	a	test	method,	you	use	the	following	types	of	Hamcrest	expressions	to	help	find	views	and	interact	with	them:

ViewMatchers:	A	ViewMatcher	expression	to	use	with		onView()		to	match	a	view	in	the	current	view	hierarchy.	Use
	onView()		with	a	ViewMatcher	so	that	you	can	examine	something	or	perform	some	action.	The	most	common	ones
are:

	withId()	:	Find	a	view	with	a	specific		android:id		(which	is	typically	defined	in	the	layout	XML	file).	For	example:

onView(withId(R.id.my_view))

	withText()	:	Find	a	view	with	specific	text,	typically	used	with		allOf()		and		withId()	.	For	example,	the	following
uses		allOf		to	cause	a	match	if	the	examined	object	matches	all	of	the	specified	conditions—the	view	uses	the
	word		id	(withId),	and	the	view	has	the	text		"Clicked!	Word	15"		(withText):

onView(allOf(withId(R.id.word),

					withText("Clicked!	Word	15"),	isDisplayed()))

Others	including	matchers	for	state	(selected	,		focused	,		enabled),	and	content	description	and	hierarchy
(root		and		children).

ViewActions:	A	ViewAction	expression	lets	you	perform	an	action	on	the	view	already	found	by	a	ViewMatcher.	The
action	can	be	any	action	you	can	perform	on	the	view,	such	as	a	click.	For	example:

.perform(click())

6.1:	Testing	the	User	Interface

264

https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki

ViewAssertions:	A	ViewAssertion	expression	lets	you	assert	or	checks	the	state	of	a	view	found	by	a	ViewMatcher.	For
example:

.check(matches(isDisplayed()))

You	would	typically	combine	a	ViewMatcher	and	a	ViewAction	in	a	single	statement,	followed	by	a	ViewAssertion
expression	in	a	separate	statement	or	included	in	the	same	statement.

You	can	see	how	all	three	expressions	work	in	the	following	statement,	which	combines	a	ViewMatcher	to	find	a	view,	a
ViewAction	to	perform	an	action,	and	a	ViewAssertion	to	check	if	the	result	of	the	action	matches	an	assertion:

onView(withId(R.id.my_view))												//	withId(R.id.my_view)	is	a	ViewMatcher

								.perform(click())															//	click()	is	a	ViewAction

								.check(matches(isDisplayed()));	//	matches(isDisplayed())	is	a	ViewAssertion

Why	is	the	Hamcrest	framework	useful	for	tests?	A	simple	assertion,	such	as		assert	(x	==	y)	,	lets	you	assert	during	a	test
that	a	particular	condition	must	be	true.	If	the	condition	is	false,	the	test	fails.	But	the	simple	assertion	provides	no	useful
error	message.	With	a	family	of	assertions,	you	can	produce	more	useful	error	messages,	but	this	leads	to	an	explosion	in
the	number	of	assertions.

With	the	Hamcrest	framework,	it	is	possible	to	define	operations	that	take	matchers	as	arguments	and	return	them	as
results,	leading	to	a	grammar	that	can	generate	a	huge	number	of	possible	matcher	expressions	from	a	small	number	of
primitive	matchers.

For	a	Hamcrest	tutorial,	see	The	Hamcrest	Tutorial.	For	a	quick	summary	of	Hamcrest	matcher	expressions,	see	the
Espresso	cheat	sheet.

Testing	an	AdapterView

In	an	AdapterView	such	as	a	spinner,	the	view	is	dynamically	populated	with	child	views	at	runtime.	If	the	target	view	you
want	to	test	is	inside	a	spinner,	the		onView()		method	might	not	work	because	only	a	subset	of	the	views	may	be	loaded	in
the	current	view	hierarchy.

Espresso	handles	this	by	providing	a	separate		onData()		method,	which	is	able	to	first	load	the	adapter	item	and	bring	it
into	focus	prior	to	operating	on	it	or	any	of	its	children	views.	The		onData()		method	uses	a	DataInteraction	object	and	its
methods,	such	as		atPosition()	,		check()	,	and		perform()		to	access	the	target	view.	Espresso	handles	loading	the	target
view	element	into	the	current	view	hierarchy,	scrolling	to	the	target	child	view,	and	putting	that	view	into	focus.

For	example,	the	following		onView()		and		onData()		statements	test	a	spinner	item	click:

1.	 Find	and	click	the	spinner	itself	(the	test	must	first	click	the	spinner	itself	in	order	click	any	item	in	the	spinner):

onView(withId(R.id.spinner_simple)).perform(click());

2.	 Find	and	then	click	the	item	in	the	spinner	that	matches	all	of	the	following	conditions:
An	item	that	is	a		String	
An	item	that	is	equal	to	the	String	"Americano"

onData(allOf(is(instanceOf(String.class)),

																								is("Americano"))).perform(click());

As	you	can	see	in	the	above	statement,	matcher	expressions	can	be	combined	to	create	flexible	expressions	of	intent:

	allOf	:	Causes	a	match	if	the	examined	object	matches	all	of	the	specified	matchers.	You	can	use		allOf()		to
combine	multiple	matchers,	such	as		containsString()		and		instanceOf()	.
	is	:	Hamcrest	strives	to	make	your	tests	as	readable	as	possible.	The		is		matcher	is	a	wrapper	that	doesn't	add	any
extra	behavior	to	the	underlying	matcher,	but	makes	your	test	code	more	readable.
	instanceOf	:	Causes	a	match	when	the	examined	object	is	an	instance	of	the	specified	type;	in	this	case,	a	string.	This
match	is	determined	by	calling	the	Class.isInstance(Object)	method,	passing	the	object	to	examine.

6.1:	Testing	the	User	Interface

265

https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
https://google.github.io/android-testing-support-library/docs/espresso/cheatsheet/index.html
https://developer.android.com/reference/android/support/test/espresso/DataInteraction.html
https://developer.android.com/reference/java/lang/Class.html#isInstance(java.lang.Object)

The	following	example	illustrates	how	you	would	test	a	spinner	using	a	combination	of		onView()		and		onData()		methods:

@RunWith(AndroidJUnit4.class)

public	class	SpinnerSelectionTest	{

			@Rule

			public	ActivityTestRule	mActivityRule	=	new	ActivityTestRule<>(

												MainActivity.class);

			@Test

			public	void	iterateSpinnerItems()	{

						String[]	myArray	=	mActivityRule.getActivity().getResources()

																														.getStringArray(R.array.labels_array);

						//	Iterate	through	the	spinner	array	of	items.

						int	size	=	myArray.length;

						for	(int	i=0;	i<size;	i++)	{

									//	Find	the	spinner	and	click	on	it.

									onView(withId(R.id.label_spinner)).perform(click());

									//	Find	the	spinner	item	and	click	on	it.

									onData(is(myArray[i])).perform(click());

									//	Find	the	button	and	click	on	it.

									onView(withId(R.id.button_main)).perform(click());

									//	Find	the	text	view	and	check	that	the	spinner	item

									//	is	part	of	the	string.

									onView(withId(R.id.text_phonelabel))

																				.check(matches(withText(containsString(myArray[i]))));

						}

			}

}

The	test	clicks	each	spinner	item	from	top	to	bottom,	checking	to	see	if	the	item	appears	in	the	text	field.	It	doesn't	matter
how	many	spinner	items	are	defined	in	the	array,	or	what	language	is	used	for	the	spinner's	items—the	test	performs	all	of
them	and	checks	their	output	against	the	array.

The	following	is	a	step-by-step	description	of	the	above	test:

1.	 The		iterateSpinnerItems()		method	begins	by	getting	the	array	used	for	the	spinner	items:

public	void	iterateSpinnerItems()	{

String[]	myArray	=

					mActivityRule.getActivity().getResources()

					.getStringArray(R.array.labels_array);

...

In	the	statement	above,	the	test	accesses	the	application's	array	(with	the	id		labels_array)	by	establishing	the	context
with	the		getActivity()		method	of	the	ActivityTestRule	class,	and	getting	a	resources	instance	in	the	application's
package	using		getResources()	.

2.	 Using	the	length	(size)	of	the	array,	the		for		loop	iterates	through	each	spinner	item.

...

int	size	=	myArray.length;

for	(int	i=0;	i<size;	i++)	{

//	Find	the	spinner	and	click	on	it.

...

3.	 The		onView()		statement	within	the		for		loop	finds	the	spinner	and	clicks	on	it.	The	test	must	click	the	spinner	itself	in
order	click	any	item	in	the	spinner:

...

//	Find	the	spinner	and	click	on	it.

onView(withId(R.id.label_spinner)).perform(click());

...

6.1:	Testing	the	User	Interface

266

https://developer.android.com/reference/android/support/test/rule/ActivityTestRule.html

4.	 The		onData()		statement	finds	and	clicks	a	spinner	item:

...

//	Find	the	spinner	item	and	click	on	it.

onData(is(myArray[i])).perform(click());

...

The	spinner	is	populated	from	the		myArray		array,	so		myArray[i]		represents	a	spinner	element	from	the	array.	As	the
	for		loop	iterates		for	(int	i=0;	i<size;	i++)	,	it	performs	a	click	on	each	spinner	element	(myArray[i])		it	finds.

5.	 The	last		onView()		statement	finds	the	text	view	(text_phonelabel)	and	checks	that	the	spinner	item	is	part	of	the
string:

...

onView(withId(R.id.text_phonelabel))

					.check(matches(withText(containsString(myArray[i]))));

...

Using	RecyclerViewActions	for	a	Recycler	View
A	RecyclerView	is	useful	when	you	have	data	collections	with	elements	that	change	at	runtime	based	on	user	action	or
network	events.	RecyclerView	is	a	UI	component	designed	to	render	a	collection	of	data,	but	is	not	a	subclass	of
AdapterView	but	of	ViewGroup.	This	means	that	you	can't	use		onData()	,	which	is	specific	to	AdapterView,	to	interact	with
list	items.

However,	there	is	a	class	called	RecyclerViewActions	that	exposes	a	small	API	to	operate	on	a	RecyclerView.	For	example,
the	following	test	clicks	on	an	item	from	the	list	by	position:

onView(withId(R.id.recyclerView))

						.perform(RecyclerViewActions.actionOnItemAtPosition(0,	click()));

The	following	test	class	demonstrates	how	to	use	RecyclerViewActions	to	test	a	RecyclerView.	The	app	lets	you	scroll	a	list
of	words.	When	you	click	on	a	word	such	as	Word	15	the	word	in	the	list	changes	to	"Clicked!	Word	15":

6.1:	Testing	the	User	Interface

267

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html

@RunWith(AndroidJUnit4.class)

public	class	RecyclerViewTest	{

			@Rule

			public	ActivityTestRule<MainActivity>	mActivityTestRule	=

												new	ActivityTestRule<>(MainActivity.class);

			@Test

			public	void	recyclerViewTest()	{

						ViewInteraction	recyclerView	=	onView(

												allOf(withId(R.id.recyclerview),	isDisplayed()));

						recyclerView.perform(actionOnItemAtPosition(15,	click()));

						ViewInteraction	textView	=	onView(

												allOf(withId(R.id.word),	withText("Clicked!	Word	15"),

																	childAtPosition(

																									childAtPosition(

																																	withId(R.id.recyclerview),

																																	11),

																									0),

																	isDisplayed()));

						textView.check(matches(withText("Clicked!	Word	15")));

			}

			private	static	Matcher<View>	childAtPosition(

												final	Matcher<View>	parentMatcher,	final	int	position)	{

						return	new	TypeSafeMatcher<View>()	{

									@Override

									public	void	describeTo(Description	description)	{

												description.appendText("Child	at	position	"

																																											+	position	+	"	in	parent	");

												parentMatcher.describeTo(description);

									}

									@Override

									public	boolean	matchesSafely(View	view)	{

												ViewParent	parent	=	view.getParent();

												return	parent	instanceof	ViewGroup	&&

																																					parentMatcher.matches(parent)

																																					&&	view.equals(((ViewGroup)

																																					parent).getChildAt(position));

									}

						};

			}

}

The	test	uses	a	recyclerView	object	of	the	ViewInteraction	class,	which	is	the	primary	interface	for	performing	actions	or
assertions	on	views,	providing	both		check()		and		perform()		methods.	Each	interaction	is	associated	with	a	view	identified
by	a	view	matcher:

The	code	below	uses	the		perform()		method	and	the	actionOnItemAtPosition()	method	of	the	RecyclerViewActions
class	to	scroll	to	the	position	(15)	and	click	the	item:

		ViewInteraction	recyclerView	=	onView(

								allOf(withId(R.id.recyclerview),	isDisplayed()));

		recyclerView.perform(actionOnItemAtPosition(15,	click()));

The	code	below	checks	to	see	if	the	clicked	item	matches	the	assertion	that	it	should	be		"Clicked!	Word	15"	:

6.1:	Testing	the	User	Interface

268

https://developer.android.com/reference/android/support/test/espresso/ViewInteraction.html
https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html#actionOnItemAtPosition(int,%20android.support.test.espresso.ViewAction)
https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html

						ViewInteraction	textView	=	onView(

												allOf(withId(R.id.word),	withText("Clicked!	Word	15"),

																	childAtPosition(

																									childAtPosition(

																																	withId(R.id.recyclerview),

																																	11),

																									0),

																	isDisplayed()));

						textView.check(matches(withText("Clicked!	Word	15")));

The	code	above	uses	a	method	called		childAtPosition()	,	which	is	defined	as	a	custom		Matcher	:

		private	static	Matcher<View>	childAtPosition(

								final	Matcher<View>	parentMatcher,	final	int	position)	{

					//	TypeSafeMatcher()	returned

					...

					}

The	custom	matcher	extends	the	abstract	TypeSaveMatcher	class	and	requires	that	you	implement	the	following:

The		matchesSafely()		method	to	define	how	to	check	for	a	view	in	a	RecyclerView.
The		describeTo()		method	to	define	how	Espresso	describes	the	output's	matcher	in	the	Run	pane	at	the	bottom	of
Android	Studio	if	a	failure	occurs.

						...

						//	TypeSafeMatcher()	returned

						return	new	TypeSafeMatcher<View>()	{

									@Override

									public	void	describeTo(Description	description)	{

												description.appendText("Child	at	position	"

																																											+	position	+	"	in	parent	");

												parentMatcher.describeTo(description);

									}

									@Override

									public	boolean	matchesSafely(View	view)	{

												ViewParent	parent	=	view.getParent();

												return	parent	instanceof	ViewGroup	&&

																																					parentMatcher.matches(parent)

																																					&&	view.equals(((ViewGroup)

																																					parent).getChildAt(position));

									}

						};

			}

}

Recording	a	test

An	Android	Studio	feature	(in	version	2.2	and	newer)	lets	you	record	an	Espresso	test,	creating	the	test	automatically.

After	choosing	to	record	a	test,	use	your	app	as	a	normal	user	would.	As	you	click	through	the	app	UI,	editable	test	code	is
generated	for	you.	Add	assertions	to	check	if	a	view	holds	a	certain	value.

You	can	record	multiple	interactions	with	the	UI	in	one	recording	session.	You	can	also	record	multiple	tests,	and	edit	the
tests	to	perform	more	actions,	using	the	recorded	code	as	a	snippet	to	copy,	paste,	and	edit.

Follow	these	steps	to	record	a	test,	using	the	RecyclerView	app	as	an	example:

Android	Studio	Project:	RecyclerView

1.	 Choose	Run	>	Record	Espresso	Test,	select	your	deployment	target	(an	emulator	or	a	device),	and	click	OK.
2.	 Interact	with	the	UI	to	do	what	you	want	to	test.	In	this	case,	scroll	the	word	list	in	the	app	on	the	emulator	or	a	device,

and	tap	Word	15.	The	Record	Your	Test	window	shows	the	action	that	was	recorded	("Tap	RecyclerView	with	element
position	15").	

6.1:	Testing	the	User	Interface

269

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/TypeSafeMatcher.html
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView

3.	 Click	Add	Assertion	in	the	Record	Your	Test	window.	A	screenshot	of	the	app's	UI	appears	in	a	pane	on	the	right	side
of	the	window.	Select	Clicked!	Word	15	in	the	screenshot	as	the	UI	element	you	want	to	check.	This	creates	an
assertion	for	the	selected	element's	view.	

6.1:	Testing	the	User	Interface

270

4.	 Choose	text	is	from	the	second	drop-down	menu,	and	enter	the	text	you	expect	to	see	in	that	UI	element.	

6.1:	Testing	the	User	Interface

271

5.	 Click	Save	Assertion,	and	then	click	Complete	Recording.	

6.	 In	the	dialog	that	appears,	you	can	edit	the	name	of	the	test,	or	accept	the	name	suggested	(such	as
MainActivityTest).

7.	 Android	Studio	may	display	a	request	to	add	more	dependencies	to	your	Gradle	Build	file.	Click	Yes	to	add	the
dependencies.

Using	UI	Automator	for	tests	that	span	multiple	apps
UI	Automator	is	a	set	of	APIs	that	can	help	you	verify	the	correct	behavior	of	interactions	between	different	user	apps,	or
between	user	apps	and	system	apps.	It	lets	you	interact	with	visible	elements	on	a	device.	A	viewer	tool	provides	a	visual
interface	to	inspect	the	layout	hierarchy	and	view	the	properties	of	UI	components	that	are	visible	on	the	foreground	of	the
device.	Like	Espresso,	UI	Automator	has	access	to	system	interaction	information	so	that	you	can	monitor	all	of	the
interaction	the	Android	system	has	with	the	app.

To	use	UI	Automator,	you	must	already	have	set	up	your	test	environment	in	the	same	way	as	for	Espresso:

Install	the	Android	Support	Repository	and	the	Android	Testing	Support	Library.
Add	the	following	dependency	to	the	project's	build.gradle	file:

6.1:	Testing	the	User	Interface

272

androidTestCompile

					'com.android.support.test.uiautomator:uiautomator-v18:2.1.2'

Use	UI	Automator	Viewer	to	Inspect	the	UI	on	a	device
UI	Automator	Viewer	(uiautomatorviewer)	provides	a	convenient	visual	interface	to	inspect	the	layout	hierarchy	and	view
the	properties	of	UI	components	that	are	visible	on	the	foreground	of	the	device.

To	launch	the	uiautomatorviewer	tool,	follow	these	steps:

1.	 Install	and	then	launch	the	app	on	a	physical	device	such	as	a	smartphone.
2.	 Connect	the	device	to	your	development	computer.
3.	 Open	a	terminal	window	and	navigate	to	the	/tools/	directory.	To	find	the	specific	path,	choose	Preferences	in	Android

Studio,	and	click	Appearance	&	Behavior	>	System	Settings	>	Android	SDK.	The	full	path	for	appears	in	the
Android	SDK	Location	box	at	the	top	of	the	screen.

4.	 Run	the	tool	with	this	command:	uiautomatorviewer

To	ensure	that	your	UI	Automator	tests	can	access	the	app's	UI	elements,	check	that	the	elements	have	visible	text	labels,
android:contentDescription	values,	or	both.	You	can	view	the	properties	of	a	UI	element	by	following	these	steps	(refer	to
the	figure	below):

1.	 After	launching	uiautomatorviewer,	the	viewer	is	empty.	Click	the	Device	Screenshot	button.
2.	 Hover	over	a	UI	element	in	the	snapshot	in	the	left-hand	panel	to	see	the	element	in	the	layout	hierarchy	in	the	upper

right	panel.
3.	 The	layout	attributes	and	other	properties	for	the	UI	element	appear	in	the	lower	right	panel.	Use	this	information	to

create	tests	that	select	a	UI	element	that	matches	a	specific	visible	attribute	or	property.	

In	the	above	figure:

1.	 Device	Screenshot	button
2.	 Selected	component	in	the	snapshot	and	in	the	layout	hierarchy
3.	 Properties	for	the	selected	component

6.1:	Testing	the	User	Interface

273

http://developer.android.com/reference/android/view/View.html#attr_android:contentDescription

In	the	app	shown	above,	the	red	floating	action	button	launches	the	Maps	app.	Follow	these	steps	to	test	the	action
performed	by	the	floating	action	button:

1.	 Tap	the	floating	action	button.
2.	 The	code	for	the	button	makes	an	implicit	intent	to	launch	the	Maps	app.
3.	 Click	the	Device	Screenshot	button	to	see	the	result	of	the	implicit	intent	(the	Maps	screen).	

Using	the	viewer,	you	can	determine	which	UI	elements	are	accessible	to	the	UI	Automator	framework.

Setup:	Ensuring	that	UI	elements	are	accessible
The	UI	Automator	framework	depends	on	the	accessibility	features	of	the	Android	framework	to	look	up	individual	UI
elements.	Implement	view	properties	as	follows:

Include	the	android:contentDescription	attribute	in	your	XML	layout	to	label	the	ImageButton,	ImageView,	CheckBox,
and	other	user	input	controls.	The	following	shows	the		android:contentDescription		attribute	added	to	a		RadioButton	
using	the	same	string	resource	tused	for	the		android:text		attribute:

<RadioButton

		android:id="@+id/sameday"

		android:layout_width="wrap_content"

		android:layout_height="wrap_content"

		android:text="@string/same_day_messenger_service"

		android:contentDescription="@string/same_day_messenger_service"

		android:onClick="onRadioButtonClicked"/>

Tip:	You	can	make	input	controls	more	accessible	for	the	sight-impaired	by	using	the		android:contentDescription		XML
layout	attribute.	The	text	in	this	attribute	does	not	appear	on	screen,	but	if	the	user	enables	accessibility	services	that
provide	audible	prompts,	then	when	the	user	navigates	to	that	control,	the	text	is	spoken.

Provide	an	android:hint	attribute	for	EditText	fields	(in	addition	to		android:contentDescription	,	which	is	useful	for

6.1:	Testing	the	User	Interface

274

https://developer.android.com/reference/android/view/View.html#attr_android:contentDescription
https://developer.android.com/reference/android/widget/ImageButton.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/widget/CheckBox.html
https://developer.android.com/reference/android/widget/TextView.html#attr_android:hint
https://developer.android.com/reference/android/widget/EditText.html

accessibility	services).	With	EditText	fields,	UI	Automator	looks	for	the		android:hint		attribute.
Associate	an		android:hint		attribute	with	any	graphical	icons	used	by	controls	that	provide	feedback	to	the	user	(for
example,	status	or	state	information).

As	a	developer,	you	should	implement	the	above	minimum	optimizations	to	support	your	users	as	well	as	UI	Automator.

Creating	a	test	class

A	UI	Automator	test	class	generally	follows	this	programming	model:

1.	 Access	the	device	to	test:	An	instance	of	the	InstrumentRegistry	class	holds	a	reference	to	the	instrumentation
running	in	the	process	along	with	the	instrumentation	arguments.	It	also	provides	an	easy	way	for	callers	to	get
instrumentation,	application	context,	and	an	instrumentation	arguments	Bundle.	You	can	get	a	UiDevice	object	by
calling	the	getInstance()	method	and	passing	it	an	Instrumentation	object
—	InstrumentationRegistry.getInstrumentation()	—as	the	argument.	For	example:

mDevice	=	UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());

2.	 Access	a	UI	element	displayed	on	the	device:	Get	a	UiObject	by	calling	the	findObject()	method.	For	example:

UiObject	okButton	=	mDevice.findObject(new	UiSelector()

				.text("OK"))

				.className("android.widget.Button"));

3.	 Perform	an	action:	Simulate	a	specific	user	interaction	to	perform	on	that	UI	element	by	calling	a	UiObject	method.
For	example:

if(okButton.exists()	&&	okButton.isEnabled())	{

				okButton.click();

}

You	may	want	to	call	setText()	to	edit	a	text	field,	or	performMultiPointerGesture()	to	simulate	a	multi-touch	gesture.

You	can	repeat	steps	2	and	3	as	needed	to	test	more	complex	user	interactions	that	involve	multiple	UI	components	or
sequences	of	user	actions.

4.	 Verify	results:	Check	that	the	UI	reflects	the	expected	state	or	behavior	after	these	user	interactions	are	performed.
You	can	use	standard	JUnit	Assert	methods	to	test	that	UI	components	in	the	app	return	the	expected	results.	For
example:

UiObject	result	=	mDevice.findObject(By.res(CALC_PACKAGE,	"result"));

assertEquals("5",	result.getText());

Accessing	the	device

The	UiDevice	class	provides	the	methods	for	accessing	and	manipulating	the	state	of	the	device.	Unlike	Espresso,	UI
Automator	can	verify	the	correct	behavior	of	interactions	between	different	user	apps,	or	between	user	apps	and	system
apps.	It	lets	you	interact	with	visible	elements	on	a	device.	In	your	tests,	you	can	call	UiDevice	methods	to	check	for	the
state	of	various	properties,	such	as	current	orientation	or	display	size.	Your	test	can	use	the	UiDevice	object	to	perform
device-level	actions,	such	as	forcing	the	device	into	a	specific	rotation,	pressing	D-pad	hardware	buttons,	and	pressing	the
Home	button.

It's	a	good	practice	to	start	your	test	from	the	Home	screen	of	the	device.	From	the	Home	screen	you	can	call	the	methods
provided	by	the	UI	Automator	API	to	select	and	interact	with	specific	UI	elements.	The	following	code	snippet	shows	how
your	test	can	get	an	instance	of	UiDevice,	simulate	a	Home	button	press,	and	launch	the	app:

6.1:	Testing	the	User	Interface

275

https://developer.android.com/reference/android/support/test/InstrumentationRegistry.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#getInstance(android.app.Instrumentation)
https://developer.android.com/reference/android/app/Instrumentation.html
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#findObject(android.support.test.uiautomator.UiSelector)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#setText(java.lang.String)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#performMultiPointerGesture(android.view.MotionEvent.PointerCoords[]...)
http://junit.org/javadoc/latest/org/junit/Assert.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html

import	org.junit.Before;

import	android.support.test.runner.AndroidJUnit4;

import	android.support.test.uiautomator.UiDevice;

import	android.support.test.uiautomator.By;

import	android.support.test.uiautomator.Until;

...

@RunWith(AndroidJUnit4.class)

@SdkSuppress(minSdkVersion	=	18)

public	class	ChangeTextBehaviorTest	{

				private	static	final	String	BASIC_SAMPLE_PACKAGE

												=	"com.example.android.testing.uiautomator.BasicSample";

				private	static	final	int	LAUNCH_TIMEOUT	=	5000;

				private	static	final	String	STRING_TO_BE_TYPED	=	"UiAutomator";

				private	UiDevice	mDevice;

				@Before

				public	void	startMainActivityFromHomeScreen()	{

								//	Initialize	UiDevice	instance

								mDevice	=

										UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());

								//	Start	from	the	home	screen

								mDevice.pressHome();

								//	Wait	for	launcher

								final	String	launcherPackage	=	mDevice.getLauncherPackageName();

								assertThat(launcherPackage,	notNullValue());

								mDevice.wait(Until.hasObject(By.pkg(launcherPackage).depth(0)),

																LAUNCH_TIMEOUT);

								//	Launch	the	app

								Context	context	=	InstrumentationRegistry.getContext();

								final	Intent	intent	=	context.getPackageManager()

																.getLaunchIntentForPackage(BASIC_SAMPLE_PACKAGE);

								//	Clear	out	any	previous	instances

								intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);

								context.startActivity(intent);

								//	Wait	for	the	app	to	appear

								mDevice.wait(Until.hasObject(By.pkg(BASIC_SAMPLE_PACKAGE).depth(0)),

																LAUNCH_TIMEOUT);

				}

}

The		@SdkSuppress(minSdkVersion	=	18)		annotation	ensures	that	tests	will	only	run	on	devices	with	Android	4.3	(API	level
18)	or	higher,	as	required	by	the	UI	Automator	framework.

Accessing	a	UI	element

Use	the	findObject()	method	of	the	UiObject	class	to	retrieve	a	UiObject	instance	that	represents	a	UI	element	matching	a
given	selector	criteria.	To	access	a	specific	UI	element,	use	the	UiSelector	class,	which	represents	a	query	for	specific
elements	in	the	currently	displayed	UI.

You	can	reuse	the	UiObject	instances	that	you	created	in	other	parts	of	your	app	testing.	The	UI	Automator	test	framework
searches	the	current	display	for	a	match	every	time	your	test	uses	a	UiObject	instance	to	click	on	a	UI	element	or	query	an
attribute.

The	following	shows	how	your	test	might	construct	UiObject	instances	using		findObject()		with	a	UiSelector	that	represent
a	Cancel	button,	and	one	that	represents	an	OK	button:

6.1:	Testing	the	User	Interface

276

https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#findObject(android.support.test.uiautomator.UiSelector)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html

UiObject	cancelButton	=	mDevice.findObject(new	UiSelector()

								.text("Cancel"))

								.className("android.widget.Button"));

UiObject	okButton	=	mDevice.findObject(new	UiSelector()

								.text("OK"))

								.className("android.widget.Button"));

If	more	that	one	element	matches,	the	first	matching	element	in	the	layout	hierarchy	(found	by	moving	from	top	to	bottom,
left	to	right)	is	returned	as	the	target	UiObject.	When	constructing	a	UiSelector,	you	can	chain	together	multiple	attributes
and	properties	to	refine	your	search.	If	no	matching	UI	element	is	found,	an	exception
(UiAutomatorObjectNotFoundException)	is	thrown.

To	nest	multiple	UiSelector	instances,	use	the	childSelector()	method	of	the	UiSelector	class.	For	example,	the	following
shows	how	your	test	might	specify	a	search	to	find	the	first	ListView	in	the	currently	displayed	UI,	then	search	within	that
ListView	to	find	a	UI	component	with	the		android:text		attribute		"List	Item	14"	:

UiObject	appItem	=	new	UiObject(new	UiSelector()

								.className("android.widget.ListView")

								.instance(1)

								.childSelector(new	UiSelector()

								.text("List	Item	14")));

While	it	may	be	useful	to	refer	to	the		android:text		attribute	of	an	element	of	a	ListView	or	RecycleView	because	there	is
no	resource	id	(android:id		attribute)	for	such	an	element,	it	is	best	to	use	a	resource	id	when	specifying	a	selector	rather
than	the		android:text		or		android:contentDescription		attributes.	Not	all	elements	have	a	text	attribute	(for	example,	icons
in	a	toolbar).	Tests	might	fail	if	there	are	minor	changes	to	the	text	of	a	UI	component,	and	the	tests	would	not	be	usable	for
apps	translated	into	other	languages	because	your	text	selectors	would	not	match	the	translated	string	resources.

Performing	actions

Once	your	test	has	retrieved	a	UiObject	object,	you	can	call	the	methods	in	the	UiObject	class	to	perform	user	interactions
on	the	UI	component	represented	by	that	object.	For	example,	the	constructed	UiObject	instances	in	the	previous	section
for	the	OK	and	Cancel	buttons	can	be	used	to	perform	a	click:

//	Simulate	a	user-click	on	the	OK	button,	if	found.

if(okButton.exists()	&&	okButton.isEnabled())	{

				okButton.click();

}

You	can	use	UiObject	methods	to	perform	actions	such	as:

click():	Click	the	center	of	the	visible	bounds	of	the	UI	element.
dragTo():	Drag	the	object	to	arbitrary	coordinates.
setText():	Set	the	text	in	an	editable	field,	after	clearing	the	field's	content.	Conversely,	you	use	the	clearTextField()
method	to	clear	the	existing	text	in	an	editable	field.
swipeUp():	Perform	the	swipe	up	action	on	the	UiObject.	Similarly,	the	swipeDown(),	swipeLeft(),	and	swipeRight()
methods	perform	corresponding	actions.

Sending	an	intent	or	launching	an	activity

The	UI	Automator	testing	framework	enables	you	to	send	an	Intent	or	launch	an	Activity	without	using	shell	commands,	by
getting	a	Context	object	through	the	getContext()	method.	For	example,	the	following	shows	how	your	test	can	use	an
Intent	to	launch	the	app	under	test:

6.1:	Testing	the	User	Interface

277

https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html
https://developer.android.com/reference/android/support/test/uiautomator/UiObjectNotFoundException.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html#childSelector(android.support.test.uiautomator.UiSelector)
https://developer.android.com/reference/android/widget/ListView.html
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#click()
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#dragTo(int,%20int,%20int)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#setText(java.lang.String)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#clearTextField()
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#swipeUp(int)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#swipeDown(int)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#swipeLeft(int)
https://developer.android.com/reference/android/support/test/uiautomator/UiObject.html#swipeRight(int)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Context.html

public	void	setUp()	{

				...

				//	Launch	a	simple	calculator	app

				Context	context	=	getInstrumentation().getContext();

				Intent	intent	=	context.getPackageManager()

												.getLaunchIntentForPackage(CALC_PACKAGE);

				intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);

												//	Clear	out	any	previous	instances

				context.startActivity(intent);

				mDevice.wait(Until.hasObject(By.pkg(CALC_PACKAGE).depth(0)),	TIMEOUT);

}

Performing	actions	on	collections

Use	the	UiCollection	class	if	you	want	to	simulate	user	interactions	on	a	collection	of	UI	elements	(for	example,	song	titles
or	emails	in	a	list).	To	create	a	UiCollection	object,	specify	a	UiSelector	that	searches	for	a	UI	container	or	a	wrapper	of
other	child	UI	elements,	such	as	a	layout	group	that	contains	child	UI	elements.

The	following	shows	how	a	test	can	use	a	UiCollection	to	represent	a	video	album	that	is	displayed	within	a	FrameLayout:

UiCollection	videos	=	new	UiCollection(new	UiSelector()

								.className("android.widget.FrameLayout"));

//	Retrieve	the	number	of	videos	in	this	collection:

int	count	=	videos.getChildCount(new	UiSelector()

								.className("android.widget.LinearLayout"));

//	Find	a	specific	video	and	simulate	a	user-click	on	it

UiObject	video	=	videos.getChildByText(new	UiSelector()

								.className("android.widget.LinearLayout"),	"Cute	Baby	Laughing");

video.click();

//	Simulate	selecting	a	checkbox	that	is	associated	with	the	video

UiObject	checkBox	=	video.getChild(new	UiSelector()

								.className("android.widget.Checkbox"));

if(!checkBox.isSelected())	checkbox.click();

Performing	actions	on	scrollable	views

Use	the	UiScrollable	class	to	simulate	vertical	or	horizontal	scrolling	across	a	display.	This	technique	is	helpful	when	a	UI
element	is	positioned	off-screen	and	you	need	to	scroll	to	bring	it	into	view.	For	example,	the	following	code	snippet	shows
how	to	simulate	scrolling	down	the	Settings	menu	and	clicking	on	the	About	phone	option:

UiScrollable	settingsItem	=	new	UiScrollable(new	UiSelector()

								.className("android.widget.ListView"));

UiObject	about	=	settingsItem.getChildByText(new	UiSelector()

								.className("android.widget.LinearLayout"),	"About	phone");

about.click();

Verifying	results

You	can	use	standard	JUnit	Assert	methods	to	test	that	UI	components	in	the	app	return	the	expected	results.	For	example,
you	can	use	assertFalse()	to	assert	that	a	condition	is	false	in	order	to	test	if	the	condition	truly	is	false	as	a	result.	Use
assertEquals()	to	test	if	a	floating	point	number	result	is	equal	to	the	assertion:

assertEquals("5",	result.getText());

The	following	shows	how	your	test	can	locate	several	buttons	in	a	calculator	app,	click	on	them	in	order,	then	verify	that	the
correct	result	is	displayed:

6.1:	Testing	the	User	Interface

278

https://developer.android.com/reference/android/support/test/uiautomator/UiCollection.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://developer.android.com/reference/android/support/test/uiautomator/UiScrollable.html
http://junit.org/javadoc/latest/org/junit/Assert.html
http://junit.org/junit4/javadoc/latest/org/junit/Assert.html#assertFalse(boolean)
http://junit.org/junit4/javadoc/latest/org/junit/Assert.html#assertEquals(float,%20float,%20float)

private	static	final	String	CALC_PACKAGE	=	"com.myexample.calc";

public	void	testTwoPlusThreeEqualsFive()	{

				//	Enter	an	equation:	2	+	3	=	?

				mDevice.findObject(new	UiSelector()

												.packageName(CALC_PACKAGE).resourceId("two")).click();

				mDevice.findObject(new	UiSelector()

												.packageName(CALC_PACKAGE).resourceId("plus")).click();

				mDevice.findObject(new	UiSelector()

												.packageName(CALC_PACKAGE).resourceId("three")).click();

				mDevice.findObject(new	UiSelector()

												.packageName(CALC_PACKAGE).resourceId("equals")).click();

				//	Verify	the	result	=	5

				UiObject	result	=	mDevice.findObject(By.res(CALC_PACKAGE,	"result"));

				assertEquals("5",	result.getText());

}

Running	instrumented	tests
To	run	a	single	test,	right-click	(or	Control-click)	the	test	in	Android	Studio,	and	choose	Run	from	the	pop-up	menu.

To	test	a	method	in	a	test	class,	right-click	the	method	in	the	test	file	and	click	Run.

To	run	all	tests	in	a	directory,	right-click	on	the	directory	and	select	Run	tests.

Android	Studio	displays	the	results	of	the	test	in	the	Run	window.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Use	Espresso	to	Test	Your	UI

Learn	more
Android	Studio	Documentation:

Test	Your	App

Android	Developer	Documentation:

Best	Practices	for	Testing
Getting	Started	with	Testing
Testing	UI	for	a	Single	App—Espresso
Testing	UI	for	Multiple	Apps—UI	Automator
Building	Instrumented	Unit	Tests
Espresso	Advanced	Samples
The	Hamcrest	Tutorial
Hamcrest	API	and	Utility	Classes
Test	Support	APIs

Android	Testing	Support	Library:

Espresso	documentation
Espresso	Samples
Espresso	basics
Espresso	cheat	sheet

Videos

6.1:	Testing	the	User	Interface

279

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/61_p_use_espresso_to_test_your_ui.html
http://d.android.com/tools/testing/testing_android.html
https://developer.android.com/training/testing/index.html
https://developer.android.com/training/testing/start/index.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://google.github.io/android-testing-support-library/docs/espresso/advanced/
https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
http://hamcrest.org/JavaHamcrest/javadoc/1.3/
https://developer.android.com/reference/android/support/test/package-summary.html
https://google.github.io/android-testing-support-library/docs/espresso/index.html
https://google.github.io/android-testing-support-library/samples/index.html
https://google.github.io/android-testing-support-library/docs/espresso/basics/
https://google.github.io/android-testing-support-library/docs/espresso/cheatsheet/index.html

Android	Testing	Support	-	Android	Testing	Patterns	#1	(introduction)
Android	Testing	Support	-	Android	Testing	Patterns	#2	(onView	view	matching)
Android	Testing	Support	-	Android	Testing	Patterns	#3	(onData	and	adapter	views)

Other:

Google	Testing	Blog:
Android	UI	Automated	Testing
Test	Sizes

Atomic	Object:	"Espresso	–	Testing	RecyclerViews	at	Specific	Positions"
Stack	Overflow:	"How	to	assert	inside	a	RecyclerView	in	Espresso?"
GitHub:	Android	Testing	Samples
Google	Codelabs:	Android	Testing	Codelab
JUnit	web	site
JUnit	annotations:	Package	org.junit

6.1:	Testing	the	User	Interface

280

https://youtu.be/W8LJjfkTKik
https://youtu.be/kL3MCQV2M2s
https://youtu.be/zi7v47kYKrk
http://googletesting.blogspot.com/2015/03/android-ui-automated-testing.html
http://googletesting.blogspot.com/2010/12/test-sizes.html
https://spin.atomicobject.com/2016/04/15/espresso-testing-recyclerviews/
http://stackoverflow.com/questions/31394569/how-to-assert-inside-a-recyclerview-in-espresso
https://github.com/googlesamples/android-testing
https://codelabs.developers.google.com/codelabs/android-testing/index.html#0
http://junit.org/
http://junit.sourceforge.net/javadoc/org/junit/package-summary.html

7.1:	AsyncTask	and	AsyncTaskLoader
Contents:

The	UI	thread
AsyncTask
AsyncTask	usage
Example	of	an	AsyncTask
Executing	an	AsyncTask
Cancelling	an	AsyncTask
Limitations	of	AsyncTask
Loaders
AsyncTaskLoader
AsyncTaskLoader	usage
Related	practical
Learn	more

There	are	two	ways	to	do	background	processing	in	Android:	using	the		AsyncTask		class,	or	using	the		Loader		framework,
which	includes	an		AsyncTaskLoader		class	that	uses		AsyncTask	.	In	most	situations	you'll	choose	the		Loader		framework,
but	it's	important	to	know	how		AsyncTask		works	so	you	can	make	a	good	choice.

In	this	chapter	you'll	learn	why	it's	important	to	process	some	tasks	in	the	background,	off	the	UI	thread.	You'll	learn	how	to
use		AsyncTask	,	when	not	to	use		AsyncTask	,	and	the	basics	of	using	loaders.

The	UI	thread
When	an	Android	app	starts,	it	creates	the	main	thread,	which	is	often	called	the	UI	thread.	The	UI	thread	dispatches
events	to	the	appropriate	user	interface	(UI)	widgets,	and	it's	where	your	app	interacts	with	components	from	the	Android
UI	toolkit	(components	from	the	android.widget	and	android.view	packages).

Android's	thread	model	has	two	rules:

1.	Do	not	block	the	UI	thread.

The	UI	thread	needs	to	give	its	attention	to	drawing	the	UI	and	keeping	the	app	responsive	to	user	input.	If	everything
happened	on	the	UI	thread,	long	operations	such	as	network	access	or	database	queries	could	block	the	whole	UI.	From
the	user's	perspective,	the	application	would	appear	to	hang.	Even	worse,	if	the	UI	thread	were	blocked	for	more	than	a	few
seconds	(about	5	seconds	currently)	the	user	would	be	presented	with	the	"application	not	responding"	(ANR)	dialog.	The
user	might	decide	to	quit	your	application	and	uninstall	it.

To	make	sure	your	app	doesn't	block	the	UI	thread:

Complete	all	work	in	less	than	16	ms	for	each	UI	screen.
Don't	run	asynchronous	tasks	and	other	long-running	tasks	on	the	UI	thread.	Instead,	implement	tasks	on	a
background	thread	using		AsyncTask		(for	short	or	interruptible	tasks)	or		AsyncTaskLoader		(for	tasks	that	are	high-
priority,	or	tasks	that	need	to	report	back	to	the	user	or	UI).

2.	Do	UI	work	only	on	the	UI	thread.

Don't	use	a	background	thread	to	manipulate	your	UI,	because	the	Android	UI	toolkit	is	not	thread-safe.

AsyncTask

7.1:	AsyncTask	and	AsyncTaskLoader

281

https://developer.android.com/reference/android/widget/package-summary.html
https://developer.android.com/reference/android/view/package-summary.html
http://developer.android.com/guide/practices/responsiveness.html

Use	the		AsyncTask		class	to	implement	an	asynchronous,	long-running	task	on	a	worker	thread.	(A	worker	thread	is	any
thread	which	is	not	the	main	or	UI	thread.)		AsyncTask		allows	you	to	perform	background	operations	and	publish	results	on
the	UI	thread	without	manipulating	threads	or	handlers.

When		AsyncTask		is	executed,	it	goes	through	four	steps:

1.	 	onPreExecute()		is	invoked	on	the	UI	thread	before	the	task	is	executed.	This	step	is	normally	used	to	set	up	the	task,
for	instance	by	showing	a	progress	bar	in	the	UI.

2.	 	doInBackground(Params...)		is	invoked	on	the	background	thread	immediately	after		onPreExecute()		finishes.	This	step
performs	a	background	computation,	returns	a	result,	and	passes	the	result	to		onPostExecute()	.	The
	doInBackground()		method	can	also	call		publishProgress(Progress...)		to	publish	one	or	more	units	of	progress.

3.	 	onProgressUpdate(Progress...)		runs	on	the	UI	thread	after		publishProgress(Progress...)		is	invoked.	Use
	onProgressUpdate()		to	report	any	form	of	progress	to	the	UI	thread	while	the	background	computation	is	executing.
For	instance,	you	can	use	it	to	pass	the	data	to	animate	a	progress	bar	or	show	logs	in	a	text	field.

4.	 	onPostExecute(Result)		runs	on	the	UI	thread	after	the	background	computation	has	finished.

For	complete	details	on	these	methods,	see	the		AsyncTask	reference	.	Below	is	a	diagram	of	their	calling	order.	

AsyncTask	usage
To	use	the		AsyncTask		class,	define	a	subclass	of		AsyncTask		that	overrides	the		doInBackground(Params...)		method	(and
usually	the		onPostExecute(Result)		method	as	well).	This	section	describes	the	parameters	and	usage	of		AsyncTask	,	then
shows	a	complete	example.

AsyncTask	parameters

In	your	subclass	of		AsyncTask	,	provide	the	data	types	for	three	kinds	of	parameters:

"Params"	specifies	the	type	of	parameters	passed	to		doInBackground()		as	an	array.
"Progress"	specifies	the	type	of	parameters	passed	to		publishProgress()		on	the	background	thread.	These
parameters	are	then	passed	to	the		onProgressUpdate()		method	on	the	main	thread.
"Result"	specifies	the	type	of	parameter	that		doInBackground()		returns.	This	parameter	is	automatically	passed	to
	onPostExecute()		on	the	main	thread.

Specify	a	data	type	for	each	of	these	parameter	types,	or	use		Void		if	the	parameter	type	will	not	be	used.	For	example:

public	class	MyAsyncTask	extends	AsyncTask	<String,	Void,	Bitmap>{}

In	this	class	declaration:

The	"Params"	parameter	type	is		String	,	which	means	that		MyAsyncTask		takes	one	or	more	strings	as	parameters	in
	doInBackground()	,	for	example	to	use	in	a	query.
The	"Progress"	parameter	type	is		Void	,	which	means	that		MyAsyncTask		won't	use	the		publishProgress()		or
	onProgressUpdate()		methods.
The	"Result"	parameter	type	is		Bitmap	.		MyAsyncTask		returns	a	Bitmap	in		doInbackground()	,	which	is	passed	into
	onPostExecute()	.

7.1:	AsyncTask	and	AsyncTaskLoader

282

https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/os/AsyncTask.html

Example	of	an	AsyncTask

private	class	DownloadFilesTask	extends	AsyncTask<URL,	Integer,	Long>	{

					protected	Long	doInBackground(URL...	urls)	{

									int	count	=	urls.length;

									long	totalSize	=	0;

									for	(int	i	=	0;	i	<	count;	i++)	{

													totalSize	+=	Downloader.downloadFile(urls[i]);

													publishProgress((int)	((i	/	(float)	count)	*	100));

													//	Escape	early	if	cancel()	is	called

													if	(isCancelled())	break;

									}

									return	totalSize;

					}

					protected	void	onProgressUpdate(Integer...	progress)	{

									setProgressPercent(progress[0]);

					}

					protected	void	onPostExecute(Long	result)	{

									showDialog("Downloaded	"	+	result	+	"	bytes");

					}

	}

The	example	above	goes	through	three	of	the	four	basic	AsyncTask	steps:

	doInBackground()		downloads	content,	a	long-running	task.	It	computes	the	percentage	of	files	downloaded	from	the
index	of	the		for		loop	and	passes	it	to		publishProgress()	.	The	check	for		isCancelled()		inside	the		for		loop
ensures	that	if	the	task	has	been	cancelled,	the	system	does	not	wait	for	the	loop	to	complete.
	onProgressUpdate()		updates	the	percent	progress.	It	is	is	called	every	time	the		publishProgress()		method	is	called
inside		doInBackground()	,	which	updates	the	percent	progress.
	doInBackground()		computes	the	total	number	of	bytes	downloaded	and	returns	it.		onPostExecute()		receives	the
returned	result	and	passes	it	into		onPostExecute()	,	where	it	is	displayed	in	a	dialog.

The	parameter	types	used	in	this	example	are:

	URL		for	the	"Params"	parameter	type.	The		URL		type	means	you	can	pass	any	number	of	URLs	into	the	call,	and	the
URLs	are	automatically	passed	into	the		doInBackground()		method	as	an	array.
	Integer		for	the	"Progress"	parameter	type.
	Long		for	the	"Result"	parameter	type.

Executing	an	AsyncTask
After	you	define	a	subclass	of		AsyncTask	,	instantiate	it	on	the	UI	thread.	Then	call		execute()		on	the	instance,	passing	in
any	number	of	parameters.	(These	parameters	correspond	to	the	"Params"	parameter	type	discussed	above).

For	example,	to	execute	the	DownloadFilesTask	task	defined	above,	use	the	following	line	of	code:

new	DownloadFilesTask().execute(url1,	url2,	url3);

Cancelling	an	AsyncTask
You	can	cancel	a	task	at	any	time,	from	any	thread,	by	invoking	the		cancel()		method.

The		cancel()		method	returns		false		if	the	task	could	not	be	cancelled,	typically	because	it	has	already	completed
normally.	Otherwise,		cancel()		returns		true	.
To	find	out	whether	a	task	has	been	cancelled,	check	the	return	value	of		isCancelled()		periodically	from
	doInBackground(Object[])	,	for	example	from	inside	a	loop	as	shown	in	the	example	above.	The		isCancelled()	

7.1:	AsyncTask	and	AsyncTaskLoader

283

https://developer.android.com/reference/android/os/AsyncTask.html#cancel(boolean)

method	returns		true		if	the	task	was	cancelled	before	it	completed	normally.
After	an		AsyncTask		task	is	cancelled,		onPostExecute()		will	not	be	invoked	after		doInBackground()		returns.	Instead,
	onCancelled(Object)		is	invoked.	The	default	implementation	of		onCancelled(Object)		simply	invokes		onCancelled()	
and	ignores	the	result.
By	default,	in-process	tasks	are	allowed	to	complete.	To	allow		cancel()		to	interrupt	the	thread	that's	executing	the
task,	pass		true		for	the	value	of		mayInterruptIfRunning	.

Limitations	of	AsyncTask
	AsyncTask		is	impractical	for	some	use	cases:

Changes	to	device	configuration	cause	problems.

When	device	configuration	changes	while	an		AsyncTask		is	running,	for	example	if	the	user	changes	the	screen
orientation,	the	activity	that	created	the		AsyncTask		is	destroyed	and	re-created.	The		AsyncTask		is	unable	to	access
the	newly	created	activity,	and	the	results	of	the		AsyncTask		aren't	published.

Old		AsyncTask		objects	stay	around,	and	your	app	may	run	out	of	memory	or	crash.

If	the	activity	that	created	the		AsyncTask		is	destroyed,	the		AsyncTask		is	not	destroyed	along	with	it.	For	example,	if
your	user	exits	the	application	after	the		AsyncTask		has	started,	the		AsyncTask		keeps	using	resources	unless	you	call
	cancel()	.

When	to	use		AsyncTask	:

Short	or	interruptible	tasks.
Tasks	that	don't	need	to	report	back	to	UI	or	user.
Low-priority	tasks	that	can	be	left	unfinished.

For	all	other	situations,	use		AsyncTaskLoader	,	which	is	part	of	the		Loader		framework	described	next.

Loaders
Background	tasks	are	commonly	used	to	load	data	such	as	forecast	reports	or	movie	reviews.	Loading	data	can	be
memory	intensive,	and	you	want	the	data	to	be	available	even	if	the	device	configuration	changes.	For	these	situations,	use
loaders,	which	are	a	set	of	classes	that	facilitate	loading	data	into	an	activity.

Loaders	use	the		LoaderManager		class	to	manage	one	or	more	loaders.		LoaderManager		includes	a	set	of	callbacks	for	when
the	loader	is	created,	when	it's	done	loading	data,	and	when	it's	reset.

Starting	a	loader

Use	the		LoaderManager		class	to	manage	one	or	more		Loader		instances	within	an	activity	or	fragment.	Use		initLoader()	
to	initialize	a	loader	and	make	it	active.	Typically,	you	do	this	within	the	activity's		onCreate()		method.	For	example:

//	Prepare	the	loader.		Either	reconnect	with	an	existing	one,

//	or	start	a	new	one.

getLoaderManager().initLoader(0,	null,	this);

If	you're	using	the	Support	Library,	make	this	call	using		getSupportLoaderManager()		instead	of		getLoaderManager()	.	For
example:

getSupportLoaderManager().initLoader(0,	null,	this);

The		initLoader()		method	takes	three	parameters:

A	unique	ID	that	identifies	the	loader.	This	ID	can	be	whatever	you	want.

7.1:	AsyncTask	and	AsyncTaskLoader

284

https://developer.android.com/reference/android/os/AsyncTask.html#onCancelled(Result)
https://developer.android.com/reference/android/os/AsyncTask.html#onCancelled()
https://developer.android.com/reference/android/app/LoaderManager.html
https://developer.android.com/reference/android/app/LoaderManager.html
https://developer.android.com/topic/libraries/support-library/index.html
https://developer.android.com/reference/android/support/v4/app/FragmentActivity.html#getSupportLoaderManager()

Optional	arguments	to	supply	to	the	loader	at	construction,	in	the	form	of	a		Bundle	.	If	a	loader	already	exists,	this
parameter	is	ignored.
A		LoaderCallbacks		implementation,	which	the		LoaderManager		calls	to	report	loader	events.	In	this	example,	the	local
class	implements	the		LoaderManager.LoaderCallbacks		interface,	so	it	passes	a	reference	to	itself,		this	.

The		initLoader()		call	has	two	possible	outcomes:

If	the	loader	specified	by	the	ID	already	exists,	the	last	loader	created	using	that	ID	is	reused.
If	the	loader	specified	by	the	ID	doesn't	exist,		initLoader()		triggers	the		onCreateLoader()		method.	This	is	where	you
implement	the	code	to	instantiate	and	return	a	new	loader.
Note:	Whether		initLoader()		creates	a	new	loader	or	reuses	an	existing	one,	the	given		LoaderCallbacks	
implementation	is	associated	with	the	loader	and	is	called	when	the	loader's	state	changes.	If	the	requested	loader
exists	and	has	already	generated	data,	then	the	system	calls		onLoadFinished()		immediately	(during		initLoader()),
so	be	prepared	for	this	to	happen.	

Put	the	call	to		initLoader()		in		onCreate()		so	that	the	activity	can	reconnect	to	the	same	loader	when	the
configuration	changes.	That	way,	the	loader	doesn't	lose	the	data	it	has	already	loaded.

Restarting	a	loader
When		initLoader()		reuses	an	existing	loader,	it	doesn't	replace	the	data	that	the	loader	contains,	but	sometimes	you	want
it	to.	For	example,	when	you	use	a	user	query	to	perform	a	search	and	the	user	enters	a	new	query,	you	want	to	reload	the
data	using	the	new	search	term.	In	this	situation,	use	the		restartLoader()		method	and	pass	in	the	ID	of	the	loader	you
want	to	restart.	This	forces	another	data	load	with	new	input	data.

About	the		restartLoader()		method:

	restartLoader()		uses	the	same	arguments	as		initLoader()	.
	restartLoader()		triggers	the		onCreateLoader()		method,	just	as		initLoader()		does	when	creating	a	new	loader.
If	a	loader	with	the	given	ID	exists,		restartLoader()		restarts	the	identified	loader	and	replaces	its	data.
If	no	loader	with	the	given	ID	exists,		restartLoader()		starts	a	new	loader.

LoaderManager	callbacks
The		LoaderManager		object	automatically	calls		onStartLoading()		when	creating	the	loader.	After	that,	the		LoaderManager	
manages	the	state	of	the	loader	based	on	the	state	of	the	activity	and	data,	for	example	by	calling		onLoadFinished()		when
the	data	has	loaded.

To	interact	with	the	loader,	use	one	of	the		LoaderManager	callbacks		in	the	activity	where	the	data	is	needed:

Call		onCreateLoader()		to	instantiate	and	return	a	new	loader	for	the	given	ID.
Call		onLoadFinished()		when	a	previously	created	loader	has	finished	loading.	This	is	typically	the	point	at	which	you
move	the	data	into	activity	views.
Call		onLoaderReset()		when	a	previously	created	loader	is	being	reset,	which	makes	its	data	unavailable.	At	this	point
your	app	should	remove	any	references	it	has	to	the	loader's	data.

The	subclass	of	the		Loader		is	responsible	for	actually	loading	the	data.	Which		Loader		subclass	you	use	depends	on	the
type	of	data	you	are	loading,	but	one	of	the	most	straightforward	is		AsyncTaskLoader	,	described	next.		AsyncTaskLoader	
uses	an		AsyncTask		to	perform	tasks	on	a	worker	thread.

AsyncTaskLoader
	AsyncTaskLoader		is	the	loader	equivalent	of		AsyncTask	.		AsyncTaskLoader		provides	a	method,		loadInBackground()	,	that
runs	on	a	separate	thread.	The	results	of		loadInBackground()		are	automatically	delivered	to	the	UI	thread,	by	way	of	the
	onLoadFinished()			LoaderManager		callback.

7.1:	AsyncTask	and	AsyncTaskLoader

285

https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html#onCreateLoader(int,%20android.os.Bundle)
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html

AsyncTaskLoader	usage
To	define	a	subclass	of		AsyncTaskLoader	,	create	a	class	that	extends		AsyncTaskLoader<D>	,	where		D		is	the	data	type	of	the
data	you	are	loading.	For	example,	the	following		AsyncTaskLoader		loads	a	list	of	strings:

public	static	class	StringListLoader	extends	AsyncTaskLoader<List<String>>	{}

Next,	implement	a	constructor	that	matches	the	superclass	implementation:

Your	constructor	takes	the	application	context	as	an	argument	and	passes	it	into	a	call	to		super()	.
If	your	loader	needs	additional	information	to	perform	the	load,	your	constructor	can	take	additional	arguments.	In	the
example	shown	below,	the	constructor	takes	a	query	term.

public	StringListLoader(Context	context,	String	queryString)	{

			super(context);

			mQueryString	=	queryString;

}

To	perform	the	load,	use	the		loadInBackground()		override	method,	the	corollary	to	the		doInBackground()	method	of
AsyncTask	.	For	example:

@Override

public	List<String>	loadInBackground()	{

				List<String>	data	=	new	ArrayList<String>;

				//TODO:	Load	the	data	from	the	network	or	from	a	database

				return	data;

}

Implementing	the	callbacks

Use	the	constructor	in	the		onCreateLoader()			LoaderManager		callback,	which	is	where	the	new	loader	is	created.	For
example,	this		onCreateLoader()		callback	uses	the		StringListLoader		constructor	defined	above:

@Override

public	Loader<List<String>>	onCreateLoader(int	id,	Bundle	args)	{

			return	new	StringListLoader(this,	args.getString("queryString"));

}

The	results	of		loadInBackground()		are	automatically	passed	into	the		onLoadFinished()		callback,	which	is	where	you	can
display	the	results	in	the	UI.	For	example:

public	void	onLoadFinished(Loader<List<String>>	loader,	List<String>	data)	{

				mAdapter.setData(data);

}

The		onLoaderReset()		callback	is	only	called	when	the	loader	is	being	destroyed,	so	you	can	leave		onLoaderReset()		blank
most	of	the	time,	because	you	won't	try	to	access	the	data	after	the	loader	is	destroyed.

When	you	use		AsyncTaskLoader	,	your	data	survives	device-configuration	changes.	If	your	activity	is	permanently
destroyed,	the	loader	is	destroyed	with	it,	with	no	lingering	tasks	that	consume	system	resources.

Loaders	have	other	benefits	too,	for	example	they	let	you	monitor	data	sources	for	changes	and	reload	the	data	if	a	change
occurs.	You	learn	more	about	the	specifics	of	loaders	in	a	future	lesson.

Related	practical

7.1:	AsyncTask	and	AsyncTaskLoader

286

The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Create	an	AsyncTask

Learn	more
AsyncTask	reference
AsyncTaskLoader	reference
LoaderManager	reference
Processes	and	Threads
Loaders	guide

7.1:	AsyncTask	and	AsyncTaskLoader

287

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/71_p_create_an_asynctask.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/reference/android/app/LoaderManager.html
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/loaders.html

7.2:	Connect	to	the	Internet
Contents:

Introduction
Network	security
Including	permissions	in	the	manifest
Performing	network	operations	on	a	worker	thread
Making	an	HTTP	connection
Parsing	the	results
Managing	the	network	state
Related	practical
Learn	more

Most	Android	applications	have	some	data	that	the	user	interacts	with;	it	might	be	news	articles,	weather	information,
contacts,	game	data,	user	information,	and	more.	Often,	this	data	is	provided	over	the	network	by	a	web	API.

In	this	lesson	you	learn	about	network	security	and	how	to	make	network	calls,	which	involves	these	tasks:

1.	 Include	permissions	in	your	AndroidManifest.xml	file.
2.	 On	a	worker	thread,	make	an	HTTP	client	connection	that	connects	to	the	network	and	downloads	(or	uploads)	data.
3.	 Parse	the	results,	which	are	usually	in	JSON	format.
4.	 Check	the	state	of	the	network	and	respond	accordingly.

Network	security
Network	transactions	are	inherently	risky,	because	they	involve	transmitting	data	that	could	be	private	to	the	user.	People
are	increasingly	aware	of	these	risks,	especially	when	their	devices	perform	network	transactions,	so	it's	very	important	that
your	app	implement	best	practices	for	keeping	user	data	secure	at	all	times.

Security	best	practices	for	network	operations:

Use	appropriate	protocols	for	sensitive	data.	For	example	for	secure	web	traffic,	use	the		HttpsURLConnection		subclass
of		HttpURLConnection	.
Use	HTTPS	instead	of	HTTP	anywhere	that	HTTPS	is	supported	on	the	server,	because	mobile	devices	frequently
connect	on	insecure	networks	such	as	public	Wi-Fi	hotspots.	Consider	using		SSLSocketClass		to	implement
authenticated,	encrypted	socket-level	communication.
Don't	use	localhost	network	ports	to	handle	sensitive	interprocess	communication	(IPC),	because	other	applications	on
the	device	can	access	these	local	ports.	Instead,	use	a	mechanism	that	lets	you	use	authentication,	for	example	a
	Service	.
Don't	trust	data	downloaded	from	HTTP	or	other	insecure	protocols.	Validate	input	that's	entered	into	a		WebView		and
responses	to	intents	that	you	issue	against	HTTP.

For	more	best	practices	and	security	tips,	take	a	look	at	the	Security	Tips	article.

Including	permissions	in	the	manifest
Before	your	app	can	make	network	calls,	you	need	to	include	a	permission	in	your	AndroidManifest.xml	file.	Add	the
following	tag	inside	the		<manifest>		tag:

<uses-permission	android:name="android.permission.INTERNET"	/>

7.2:	Connect	to	the	Internet

288

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection.html
https://developer.android.com/reference/javax/net/ssl/SSLSocket.html
https://developer.android.com/training/articles/security-tips.html

When	using	the	network,	it's	a	best	practice	to	monitor	the	network	state	of	the	device	so	that	you	don't	attempt	to	make
network	calls	when	the	network	is	unavailable.	To	access	the	network	state	of	the	device,	your	app	needs	an	additional
permission:

<uses-permission	android:name="android.permission.ACCESS_NETWORK_STATE"	/>

Performing	network	operations	on	a	worker	thread
Always	perform	network	operations	on	a	worker	thread,	separate	from	the	UI.	For	example,	in	your	Java	code	you	could
create	an		AsyncTask		(or		AsyncTaskLoader)	implementation	that	opens	a	network	connection	and	queries	an	API.	Your
main	code	checks	whether	a	network	connection	is	active.	If	so,	it	runs	the		AsyncTask		in	a	separate	thread,	then	displays
the	results	in	the	UI.

Note:	If	you	run	network	operations	on	the	main	thread	instead	of	on	a	worker	thread,	you	receive	an	error.

Making	an	HTTP	connection
Most	network-connected	Android	apps	use	HTTP	and	HTTPS	to	send	and	receive	data	over	the	network.	For	a	refresher
on	HTTP,	visit	this	Learn	HTTP	tutorial.

Note:	If	a	web	server	offers	HTTPS,	you	should	use	it	instead	of	HTTP	for	improved	security.
The		HttpURLConnection		Android	client	supports	HTTPS,	streaming	uploads	and	downloads,	configurable	timeouts,	IPv6,
and	connection	pooling.	To	use	the		HttpURLConnection		client,	build	a	URI	(the	request's	destination).	Then	obtain	a
connection,	send	the	request	and	any	request	headers,	download	and	read	the	response	and	any	response	headers,	and
disconnect.

Building	your	URI
To	open	an	HTTP	connection,	you	need	to	build	a	request	URI.	A	URI	is	usually	made	up	of	a	base	URL	and	a	collection	of
query	parameters	that	specify	the	resource	in	question.	For	example	to	search	for	the	first	five	book	results	for	"Pride	and
Prejudice"	in	the	Google	Books	API,	use	the	following	URI:

https://www.googleapis.com/books/v1/volumes?q=pride+prejudice&maxResults=5&printType=books

To	construct	a	request	URI	programmatically,	use	the		URI.parse()		method	with	the		buildUpon()		and
	appendQueryParameter()		methods.	The	following	code	builds	the	complete	URI	shown	above:

//	Base	URL	for	the	Books	API.

final	String	BOOK_BASE_URL	=		"https://www.googleapis.com/books/v1/volumes?";

final	String	QUERY_PARAM	=	"q";	//	Parameter	for	the	search	string

final	String	MAX_RESULTS	=	"maxResults";	//	Parameter	to	limit	search	results.

final	String	PRINT_TYPE	=	"printType";	//	Parameter	to	filter	by	print	type

//	Build	up	the	query	URI,	limiting	results	to	5	items	and	printed	books.

Uri	builtURI	=	Uri.parse(BOOK_BASE_URL).buildUpon()

							.appendQueryParameter(QUERY_PARAM,	"pride+prejudice")

							.appendQueryParameter(MAX_RESULTS,	"5")

							.appendQueryParameter(PRINT_TYPE,	"books")

							.build();

To	convert	the	URI	to	a	string,	use	the		toString()		method:

String	myurl	=	builtURI.toString();

7.2:	Connect	to	the	Internet

289

http://www.tutorialspoint.com/http/
https://developer.android.com/reference/java/net/HttpURLConnection.html

Connect	and	download	data

In	the	worker	thread	that	performs	your	network	transactions,	for	example	within	your	override	of	the		doInBackground()	
method	in	an		AsyncTask	,	use	the		HttpURLConnection		class	to	perform	an	HTTP		GET		request	and	download	the	data	your
app	needs.	Here's	how:

1.	 To	obtain	a	new		HttpURLConnection	,	call		URL.openConnection()		using	the	URI	that	you've	built.	Cast	the	result	to
	HttpURLConnection	.

The	URI	is	the	primary	property	of	the	request,	but	request	headers	can	also	include	metadata	such	as	credentials,
preferred	content	types,	and	session	cookies.

2.	 Set	optional	parameters:
For	a	slow	connection,	you	might	want	a	long	connection	timeout	(the	time	to	make	the	initial	connection	to	the
resource)	or	read	timeout	(the	time	to	actually	read	the	data).
To	change	the	request	method	to	something	other	than		GET	,	use		setRequestMethod()	.
If	you	won't	use	the	network	for	input,	set		setDoInput		to		false	.	(Its	default	is		true	.)
For	more	methods	you	can	set,	see	the		HttpURLConnection		and		URLConnection		reference	documentation.

3.	 Open	an	input	stream	using		getInputStream()	,	then	read	the	response	and	convert	it	into	a	string.	Response	headers
typically	include	metadata	such	as	the	response	body's	content	type	and	length,	modification	dates,	and	session
cookies.	If	the	response	has	no	body,		getInputStream()		returns	an	empty	stream.

4.	 Call		disconnect()		to	close	the	connection.	Disconnecting	releases	the	resources	held	by	a	connection	so	they	can	be
closed	or	reused.

These	steps	are	shown	in	the	Request	example,	below.

If	you're	posting	data	over	the	network	and	not	just	receiving	data,	you	need	to	upload	a	request	body,	which	holds	the	data
to	be	posted.	To	do	this:

1.	 Configure	the	connection	so	that	output	is	possible	by	calling		setDoOutput(true)	.	(By	default,		HttpURLConnection		uses
HTTP		GET		requests.	When		setDoOutput		is		true	,		HttpURLConnection		uses	HTTP		POST		requests	by	default.)

2.	 Open	an	output	stream	by	calling		getOutputStream()	.

For	more	about	posting	data	to	the	network,	see	"Posting	Content"	in	the		HttpURLConnection	documentation	.

Note:	All	network	calls	must	be	performed	in	a	worker	thread	and	not	on	the	UI	thread.

Request	example
The	following	example	sends	a	request	to	the	URL	built	in	the	Building	your	URI	section,	above.	The	request	obtains	a	new
	HttpURLConnection	,	opens	an	input	stream,	reads	the	response,	converts	the	response	into	a	string,	and	closes	the
connection.

7.2:	Connect	to	the	Internet

290

https://developer.android.com/reference/java/net/HttpURLConnection.html
https://developer.android.com/reference/java/net/URL.html#openConnection()
https://developer.android.com/reference/java/net/URLConnection.html#setConnectTimeout(int)
https://developer.android.com/reference/java/net/URLConnection.html#setReadTimeout(int)
https://developer.android.com/reference/java/net/HttpURLConnection.html#setRequestMethod(java.lang.String)
https://developer.android.com/reference/java/net/URLConnection.html#setDoInput(boolean)
https://developer.android.com/reference/java/net/HttpURLConnection.html
https://developer.android.com/reference/java/net/URLConnection.html
https://developer.android.com/reference/java/net/URLConnection.html#getInputStream()
https://developer.android.com/reference/java/net/HttpURLConnection.html#disconnect()
https://developer.android.com/reference/java/net/URLConnection.html#setDoOutput(boolean)
https://developer.android.com/reference/java/net/URLConnection.html#getOutputStream()
https://developer.android.com/reference/java/net/HttpURLConnection.html

private	String	downloadUrl(String	myurl)	throws	IOException	{

				InputStream	inputStream	=	null;

				//	Only	display	the	first	500	characters	of	the	retrieved

				//	web	page	content.

				int	len	=	500;

				try	{

								URL	url	=	new	URL(myurl);

								HttpURLConnection	conn	=	(HttpURLConnection)	url.openConnection();

								conn.setReadTimeout(10000	/*	milliseconds	*/);

								conn.setConnectTimeout(15000	/*	milliseconds	*/);

								//	Start	the	query

								conn.connect();

								int	response	=	conn.getResponseCode();

								Log.d(DEBUG_TAG,	"The	response	is:	"	+	response);

								inputStream	=	conn.getInputStream();

								//	Convert	the	InputStream	into	a	string

								String	contentAsString	=	convertInputToString(inputStream,	len);

								return	contentAsString;

				//	Close	the	InputStream	and	connection

				}	finally	{

						conn.disconnect();

								if	(inputStream	!=	null)	{

												inputStream.close();

								}

				}

}

Converting	the	InputStream	to	a	string
An		InputStream		is	a	readable	source	of	bytes.	Once	you	get	an		InputStream	,	it's	common	to	decode	or	convert	it	into	the
data	type	you	need.	In	the	example	above,	the		InputStream		represents	plain	text	from	the	web	page	located	at
https://www.googleapis.com/books/v1/volumes?q=pride+prejudice&maxResults=5&printType=books.

The		convertInputToString		method	defined	below	converts	the		InputStream		to	a	string	so	that	the	activity	can	display	it	in
the	UI.	The	method	uses	an		InputStreamReader		instance	to	read	bytes	and	decode	them	into	characters:

//	Reads	an	InputStream	and	converts	it	to	a	String.

public	String	convertInputToString(InputStream	stream,	int	len)

											throws	IOException,	UnsupportedEncodingException	{

				Reader	reader	=	null;

				reader	=	new	InputStreamReader(stream,	"UTF-8");

				char[]	buffer	=	new	char[len];

				reader.read(buffer);

				return	new	String(buffer);

}

Note:	If	you	expect	a	long	response,	wrap	your		InputStreamReader		inside	a		BufferedReader		for	more	efficient	reading	of
characters,	arrays,	and	lines.	For	example:	
	reader	=	new	BufferedReader(new	InputStreamReader(stream,	"UTF-8"));	

Parsing	the	results
When	you	make	web	API	queries,	the	results	are	often	in	JSON	format.

Below	is	an	example	of	a	JSON	response	from	an	HTTP	request.	It	shows	the	names	of	three	menu	items	in	a	popup	menu
and	the	methods	that	are	triggered	when	the	menu	items	are	clicked:

7.2:	Connect	to	the	Internet

291

https://developer.android.com/reference/java/io/InputStream.html
https://www.googleapis.com/books/v1/volumes?q=pride+prejudice&maxResults=5&printType=books
http://www.json.org/

{"menu":	{

		"id":	"file",

		"value":	"File",

		"popup":	{

				"menuitem":	[

						{"value":	"New",	"onclick":	"CreateNewDoc()"},

						{"value":	"Open",	"onclick":	"OpenDoc()"},

						{"value":	"Close",	"onclick":	"CloseDoc()"}

]

		}

}

To	find	the	value	of	an	item	in	the	response,	use	methods	from	the		JSONObject		and		JSONArray		classes.	For	example,
here's	how	to	find	the		"onclick"		value	of	the	third	item	in	the		"menuitem"		array:

JSONObject	data	=	new	JSONObject(responseString);

JSONArray	menuItemArray	=	data.getJSONArray("menuitem");

JSONObject	thirdItem	=	menuItemArray.getJSONObject(2);

String	onClick	=	thirdItem.getString("onclick");

Managing	the	network	state
Making	network	calls	can	be	expensive	and	slow,	especially	if	the	device	has	little	connectivity.	Being	aware	of	the	network
connection	state	can	prevent	your	app	from	attempting	to	make	network	calls	when	the	network	isn't	available.

Sometimes	it's	also	important	for	your	app	to	know	what	kind	of	connectivity	the	device	has:	Wi-Fi	networks	are	typically
faster	than	data	networks,	and	data	networks	are	often	metered	and	expensive.	To	control	when	certain	tasks	are
performed,	monitor	the	network	state	and	respond	appropriately.	For	example,	you	may	want	to	wait	until	the	device	is
connected	to	Wi-Fi	to	perform	a	large	file	download.

To	check	the	network	connection,	use	the	following	classes:

	ConnectivityManager		answers	queries	about	the	state	of	network	connectivity.	It	also	notifies	applications	when
network	connectivity	changes.
	NetworkInfo		describes	the	status	of	a	network	interface	of	a	given	type	(currently	either	mobile	or	Wi-Fi).

The	following	code	snippet	tests	whether	Wi-Fi	and	mobile	are	connected.	In	the	code:

The		getSystemService		method	gets	an	instance	of		ConnectivityManager	.
The		getNetworkInfo		method	gets	the	status	of	the	device's	Wi-Fi	connection,	then	its	mobile	connection.	The
	getNetworkInfo		method	returns	a		NetworkInfo		object,	which	contains	information	about	the	given	network's
connection	status	(whether	it's	idle,	connecting,	and	so	on).
The		networkInfo.isConnected()		method	returns		true		if	the	given	network	is	connected.	If	the	network	is	connected,	it
can	be	used	to	establish	sockets	and	pass	data.

private	static	final	String	DEBUG_TAG	=	"NetworkStatusExample";

ConnectivityManager	connMgr	=	(ConnectivityManager)

				getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo	networkInfo	=	connMgr.getNetworkInfo(ConnectivityManager.TYPE_WIFI);

boolean	isWifiConn	=	networkInfo.isConnected();

networkInfo	=	connMgr.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

boolean	isMobileConn	=	networkInfo.isConnected();

Log.d(DEBUG_TAG,	"Wifi	connected:	"	+	isWifiConn);

Log.d(DEBUG_TAG,	"Mobile	connected:	"	+	isMobileConn);

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

7.2:	Connect	to	the	Internet

292

https://developer.android.com/reference/org/json/JSONObject.html
https://developer.android.com/reference/org/json/JSONArray.html
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/NetworkInfo.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details

Connect	to	the	Internet	with	AsyncTask	and	AsyncTaskLoader

Learn	more
Connecting	to	the	Network
Managing	Network	Usage
HttpURLConnection	reference
ConnectivityManager	reference
InputStream	reference

7.2:	Connect	to	the	Internet

293

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/72_p_asynctask_asynctaskloader.html
https://developer.android.com/training/basics/network-ops/connecting.html
https://developer.android.com/training/basics/network-ops/managing.html
https://developer.android.com/reference/java/net/HttpURLConnection.html
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/java/io/InputStream.html

7.3:	Broadcast	Receivers
Contents:

Introduction
Broadcast	intents
Broadcast	receivers
Security	guidelines
LocalBroadcastManager
Related	practical
Learn	more

Explicit	intents	are	used	to	start	specific,	fully	qualified	activities,	as	well	as	to	pass	information	between	activities	in	your
app.	Implicit	intents	are	used	to	start	activities	based	on	registered	components	that	the	system	is	aware	of,	for	example
general	functionality.

In	this	lesson	you	learn	about	broadcast	intents,	which	don't	start	activities	but	instead	are	delivered	to	broadcast	receivers.

Broadcast	intents
The	intents	you've	seen	up	to	now	always	resulted	in	an	activity	being	launched,	either	a	specific	activity	from	your
application	or	an	activity	from	a	different	application	that	could	fulfill	the	requested	action.	But	sometimes	an	intent	doesn't
have	a	specific	recipient,	and	sometimes	you	don't	want	an	activity	to	be	launched	in	response	to	an	intent.	For	example,
when	your	app	receives	a	system	intent	indicating	that	the	network	state	of	a	device	has	changed,	you	probably	don't	want
to	launch	an	activity,	but	you	may	want	to	disable	some	functionality	of	your	app.

For	this	reason	there's	a	third	type	of	intent	that	can	be	delivered	to	any	interested	application:	the	broadcast	intent.
Although	broadcast	intents	are	defined	the	same	way	as	implicit	intents,	each	type	of	intent	has	important	distinguishing
characteristics:

Broadcast	intents	are	delivered	using		sendBroadcast()		or	a	related	method,	while	other	types	of	intents	use
	startActivity()		to	start	activities.	When	you	broadcast	an	intent,	you	never	find	or	start	an	activity.	Likewise,	there's
no	way	for	a	broadcast	receiver	to	see	or	capture	intents	used	with		startActivity()	.
A	broadcast	intent	is	a	background	operation	that	the	user	is	not	normally	aware	of.	Starting	an	activity	with	an	intent,
on	the	other	hand,	is	a	foreground	operation	that	modifies	what	the	user	is	currently	interacting	with.

There	are	two	types	of	broadcast	intents,	those	delivered	by	the	system	(system	broadcast	intents),	and	those	that	your
app	delivers	(custom	broadcast	intents).

System	broadcast	intents

The	system	delivers	a	system	broadcast	intent	when	a	system	event	occurs	that	might	interest	your	app.	For	example:

When	the	device	boots,	the	system	sends	an		ACTION_BOOT_COMPLETED		system	broadcast	intent.	This	intent	contains	the
constant	value		"android.intent.action.BOOT_COMPLETED"	.
When	the	device	is	connected	to	external	power,	the	system	sends		ACTION_POWER_CONNECTED	,	which	contains	the
constant	value		"android.intent.action.ACTION_POWER_CONNECTED"	.	When	the	device	is	disconnected	from	external
power,	the	system	sends		ACTION_POWER_DISCONNECTED	.
When	the	device	is	low	on	memory,	the	system	sends		ACTION_DEVICE_STORAGE_LOW	.	This	intent	contains	the	constant
value		"android.intent.action.DEVICE_STORAGE_LOW"	.

	ACTION_DEVICE_STORAGE_LOW		is	a	sticky	broadcast,	which	means	that	the	broadcast	value	is	held	in	a	cache.	If	you	need	to
know	whether	your	broadcast	receiver	is	processing	a	value	that's	in	the	cache	(sticky)	or	a	value	that's	being	broadcast	in
the	present	moment,	use		isInitialStickyBroadcast()	.

7.3:	Broadcast	Receivers

294

https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html#ACTION_BOOT_COMPLETED
https://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_CONNECTED
https://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_DISCONNECTED
https://developer.android.com/reference/android/content/Intent.html#ACTION_DEVICE_STORAGE_LOW
https://developer.android.com/reference/android/content/BroadcastReceiver.html#isInitialStickyBroadcast()

For	more	about	common	system	broadcasts,	visit	the		Intent		reference.

To	receive	system	broadcast	intents,	you	need	to	create	a	broadcast	receiver.

Custom	broadcast	intents

Custom	broadcast	intents	are	broadcast	intents	that	your	application	sends	out.	Use	a	custom	broadcast	intent	when	you
want	your	app	to	take	an	action	without	launching	an	activity,	for	example	when	you	want	to	let	other	apps	know	that	data
has	been	downloaded	to	the	device	and	is	available	for	them	to	use.

To	create	a	custom	broadcast	intent,	create	a	custom	intent	action.	To	deliver	a	custom	broadcast	to	other	apps,	pass	the
intent	to		sendBroadcast()	,		sendOrderedBroadcast()	,	or		sendStickyBroadcast()	.	(For	details	about	these	methods,	see	the
	Context		reference	documentation.)

For	example,	the	following	method	creates	an	intent	and	broadcasts	it	to	all	interested	broadcast	receivers:

public	void	sendBroadcastIntent()	{

			Intent	intent	=	new	Intent();

			intent.setAction("com.example.myproject.ACTION_SHOW_TOAST");

			sendBroadcast(intent);

}

Note:	When	you	specify	the	action	for	the	intent,	use	your	unique	package	name	(com.example.myproject		in	the	example)
to	make	sure	your	intent	doesn't	conflict	with	an	intent	that	is	broadcast	from	a	different	app	or	from	the	system.

Broadcast	receivers
Broadcast	intents	aren't	targeted	at	specific	recipients.	Instead,	interested	apps	register	a	component	to	"listen"	for	these
kind	of	intents.	This	listening	component	is	called	a	broadcast	receiver.

Use	broadcast	receivers	to	respond	to	messages	that	are	broadcast	from	other	apps	or	from	the	system.	To	create	a
broadcast	receiver:

1.	 Define	a	subclass	of	the		BroadcastReceiver		class	and	implement	the		onReceive()		method.
2.	 Register	the	broadcast	receiver	either	dynamically	in	Java,	or	statically	in	your	app's	manifest	file.

As	part	of	this	step,	use	an	intent	filter	to	specify	which	kinds	of	broadcast	intents	you're	interested	in	receiving.

These	steps	are	described	below.

Define	a	subclass	of	BroadcastReceiver
To	create	a	broadcast	receiver,	define	a	subclass	of	the		BroadcastReceiver		class.	This	subclass	is	where	intents	are
delivered	(if	they	match	the	intent	filters	you	set	when	you	register	the	subclass,	which	happens	in	a	later	step).

Within	your	subclass	definition:

Implement	the	required		onReceive()		method.
Include	any	other	logic	that	your	broadcast	receiver	needs.

Example:	Create	a	broadcast	receiver

In	this	example,	the		AlarmReceiver		subclass	of		BroadcastReceiver		shows	a	Toast	message	if	the	incoming	broadcast
intent	has	the	action		ACTION_SHOW_TOAST	:

7.3:	Broadcast	Receivers

295

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html

private	class	AlarmReceiver	extends	BroadcastReceiver	{

			@Override

			public	void	onReceive(Context	context,	Intent	intent)	{

							if	(intent.getAction().equals(ACTION_SHOW_TOAST))	{

												CharSequence	text	=	"Broadcast	Received!";

												int	duration	=	Toast.LENGTH_SHORT;

												Toast	toast	=	Toast.makeText(context,	text,	duration);

												toast.show();

							}

			}

}

Note:	Don't	use	asynchronous	operations	in	your		onReceive()		implementation,	because	once	your	code	returns	from
	onReceive()	,	the	system	considers	the		BroadcastReceiver		object	to	be	finished.	If		onReceive()		were	to	start	an
asynchronous	operation,	the	system	would	kill	the		BroadcastReceiver		process	before	the	asynchronous	operation	had	a
chance	to	complete.
If	you	need	a	long-running	operation	that	doesn't	require	a	UI,	use	a	Service	launched	from	the	broadcast	receiver.	In
particular:

You	can't	show	a	dialog	from	within	a		BroadcastReceiver	.	Instead,	use	the		NotificationManager		API.
You	can't	bind	to	a	service	from	within	a		BroadcastReceiver	.	Instead,	use		Context.startService()		to	send	a	command
to	the	service.

Registering	your	broadcast	receiver	and	setting	intent	filters
There	are	two	ways	to	register	your	broadcast	receiver:	statically	in	the	manifest,	or	dynamically	in	your	activity.

Static	registration
To	register	your	broadcast	receiver	statically,	add	a		<receiver>		element	to	your	AndroidManifest.xml	file.	Within	the
	<receiver>		element:

Use	the	path	to	your		BroadcastReceiver		subclass	as	the		android:name		attribute.
To	prevent	other	applications	from	sending	broadcasts	to	your	receiver,	set	the	optional		android:exported		attribute	to
	false	.	This	is	an	important	security	guideline.
To	specify	the	types	of	intents	the	component	is	listening	for,	use	a	nested		<intent-filter>		element.

Example:	Static	registration	and	intent	filter	for	a	custom	broadcast	intent

The	following	code	snippet	is	an	example	of	static	registration	for	a	broadcast	receiver	that	listens	for	a	custom	broadcast
intent	with	"	ACTION_SHOW_TOAST	"	in	the	name	of	its	action:

The	receiver's		name		is	the	module	name	plus	the	name	of	the		BroadcastReceiver		subclass	defined	above
(AlarmReceiver).
The	receiver	is	not	exported,	meaning	that	no	other	applications	can	deliver	broadcasts	to	this	app.
The	receiver	includes	an	intent	filter	that	checks	whether	incoming	intents	include	an	action	named
	ACTION_SHOW_TOAST	.

<receiver

android:name="com.example.myproject.AlarmReceiver"

android:exported="false">

<intent-filter>

			<action	android:name="com.example.myproject.intent.action.ACTION_SHOW_TOAST"/>

</intent-filter>

</receiver>

Intent	filters

7.3:	Broadcast	Receivers

296

https://developer.android.com/guide/components/services.html
https://developer.android.com/reference/android/app/NotificationManager.html
https://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)

When	the	system	receives	an	implicit	intent	to	start	an	activity,	it	searches	for	the	best	activity	for	the	intent	by	comparing	it
to	intent	filters,	based	on	three	aspects:

Action:	Does	the	action	specified	in	the	intent	match	one	of	the		<action>		names	listed	in	the	filter?	In	the	example
above,	only	intents	with		ACTION_SHOW_TOAST		in	the	name	of	their	action	match	the	filter.
Data:	Does	the	data	in	the	intent	match	one	of	the		<data>		types	that	are	listed	in	the	filter?
Category:	Does	every	category	in	the	intent	match	a		<category>		that's	named	in	the	filter?

Example:	Intent	filter	for	a	system	broadcast	intent

This	example	shows	an	intent	filter	for	a	receiver	that	listens	for	the	device	to	finish	booting:

<intent-filter>

				<action	android:name="android.intent.action.BOOT_COMPLETED"/>

</intent-filter>

To	learn	more	about	using	intent	filters	to	select	intents,	see	the	Intent	Resolution	section	of	the	intent	guide.

If	no	intent	filters	are	specified,	the	broadcast	receiver	can	only	be	activated	with	an	explicit	broadcast	intent	that	names	the
component	by	name.	(This	is	similar	to	how	you	launch	activities	by	their	class	name	with	explicit	intents.)

If	you	use	static	registration	for	your	broadcast	receiver,	the	Android	system	creates	a	new	process	to	run	your	broadcast
receiver	if	no	processes	associated	with	your	application	are	running.	This	means	that	the	receiver	will	respond,	even	if
your	app	is	not	running.

Dynamic	registration	and	unregistration
You	can	also	register	a	broadcast	receiver	dynamically,	which	ties	its	operation	to	the	lifecycle	of	your	activity.	To	register
your	receiver	dynamically,	call		registerReceiver()		and	pass	in	the		BroadcastReceiver		object	and	an	intent	filter.	For
example:

IntentFilter	intentFilter	=	new	IntentFilter();

intentFilter.addAction(ACTION_SHOW_TOAST);

mReceiver	=	new	AlarmReceiver();

registerReceiver(mReceiver,	intentFilter);

Note:	If	you	register	your	receiver	to	receive	only	local	broadcasts,	you	must	register	it	dynamically;	static	registration	isn't
an	option.
You	also	need	to	unregister	the	receiver	by	calling		unregisterReceiver()		and	passing	in	your		BroadcastReceiver		object.
For	example:

unregisterReceiver(mReceiver);

Where	you	call	these	methods	depends	on	the	desired	lifecycle	of	your		BroadcastReceiver		object:

If	the	receiver	is	only	needed	when	your	activity	is	visible	(for	example,	to	disable	a	network	function	when	the	network
is	not	available),	then	register	the	receiver	in		onResume()	.	Unregister	the	receiver	in		onPause()	.
You	can	also	use	the		onStart()	/	onStop()		or		onCreate()/onDestoy()		method	pairs,	if	they	are	more	appropriate	for
your	use	case.

Security	guidelines
When	you	use	broadcast	intents	and	broadcast	receivers,	information	is	sent	between	applications,	which	creates	security
risks.	To	avoid	these	risks,	you	can	use		LocalBroadcastManager		(described	below),	or	you	can	follow	these	guidelines:

7.3:	Broadcast	Receivers

297

https://developer.android.com/guide/topics/manifest/action-element.html
https://developer.android.com/guide/topics/manifest/data-element.html
https://developer.android.com/guide/topics/manifest/category-element.html
https://developer.android.com/guide/components/intents-filters.html#Resolution

Make	sure	that	the	names	of	intent	actions	and	other	strings	are	in	a	namespace	that	you	own,	or	else	you	may
inadvertently	conflict	with	other	applications.	The	intent	namespace	is	global.
When	you	use		registerReceiver()	,	any	application	can	send	broadcasts	to	that	registered	receiver.	To	control	who
can	send	broadcasts	to	it,	use	the	permissions	described	below.
When	you	register	a	broadcast	receiver	statically,	any	other	application	can	send	broadcasts	to	it,	regardless	of	the
filters	you	specify.	To	prevent	others	from	sending	to	it,	make	it	unavailable	to	them	with		android:exported="false"	.
When	you	use		sendBroadcast()		or	related	methods,	any	other	application	can	receive	your	broadcasts.	To	control	who
can	receive	such	broadcasts,	use	the	permissions	described	below.

Either	the	sender	or	receiver	of	a	broadcast	can	enforce	access	permissions:

To	enforce	a	permission	when	sending	a	broadcast,	supply	a	non-null	permission	argument	to		sendBroadcast()	.

Only	receivers	who	have	been	granted	this	permission	(by	requesting	it	with	the		<uses-permission>		tag	in	their
AndroidManifest.xml)	can	receive	the	broadcast.

To	enforce	a	permission	when	receiving	a	broadcast,	supply	a	non-null	permission	when	registering	your	receiver
either	when	calling		registerReceiver()		or	in	the	static		<receiver>		tag	in	your	AndroidManifest.xml.

Only	broadcasters	who	have	been	granted	this	permission	(by	requesting	it	with	the		<uses-permission>		tag	in	their
AndroidManifest.xml)	will	be	able	to	send	an	intent	to	the	receiver.	The	receiver	has	to	request	permission	in	the
manifest,	regardless	of	whether	the	sender	is	registered	statically	or	dynamically.

LocalBroadcastManager
To	avoid	having	to	manage	the	security	aspects	described	in	the	Security	guidelines,	use	the		LocalBroadcastManager		class.
	LocalBroadcastManager		lets	you	send	and	receive	broadcasts	within	a	single	process	and	a	single	application,	which	means
you	don't	have	to	worry	about	cross-application	security.

Sending	local	broadcasts

To	send	a	broadcast	using		LocalBroadcastManager	:

1.	 Get	an	instance	of		LocalBroadcastManager		by	calling		getInstance()		and	passing	in	the	application	context.
2.	 Call		sendBroadcast()		on	the	instance,	passing	in	the	intent	that	you	want	to	broadcast.

For	example:

LocalBroadcastManager.getInstance(this).sendBroadcast(customBroadcastIntent);

Registering	your	receiver	for	local	broadcasts

To	register	your	receiver	to	receive	only	local	broadcasts:

1.	 Get	an	instance	of		LocalBroadcastManager		by	calling		getInstance()		and	passing	in	the	application	context.
2.	 Call		registerReceiver()	,	passing	in	the	receiver	and	an	intent	filter	as	you	would	for	a	regular	broadcast	receiver.	You

must	register	local	receivers	dynamically,	because	static	registration	in	the	manifest	is	unavailable.

For	example:

LocalBroadcastManager.getInstance(this).registerReceiver

							(mReceiver,	new	IntentFilter(CustomReceiver.ACTION_CUSTOM_BROADCAST));

To	unregister	the	broadcast	receiver:

LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver);

7.3:	Broadcast	Receivers

298

https://developer.android.com/reference/android/R.styleable.html#AndroidManifestUsesPermission
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Broadcast	Receivers

Learn	more
BroadcastReceiver	reference
Intents	and	Intent	Filters	guide
LocalBroadcastManager	reference

7.3:	Broadcast	Receivers

299

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/73_broadcast_receivers.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html

7.4:	Services
Contents:

Introduction
What	is	a	service?
Declaring	services	in	the	manifest
Started	services
Bound	services
Service	lifecycle
Foreground	services
Scheduled	services
Learn	More

In	this	chapter	you	learn	about	the	different	types	of	services,	how	to	use	them,	and	how	to	manage	their	lifecycles	within
your	app.

What	is	a	service?
A	service	is	an	application	component	that	performs	long-running	operations,	usually	in	the	background.	A	service	doesn't
provide	a	user	interface	(UI).	(An	activity,	on	the	other	hand,	provides	a	UI.)

A	service	can	be	started,	bound,	or	both:

A	started	service	is	a	service	that	an	application	component	starts	by	calling		startService()	.

Use	started	services	for	tasks	that	run	in	the	background	to	perform	long-running	operations.	Also	use	started	services
for	tasks	that	perform	work	for	remote	processes.

A	bound	service	is	a	service	that	an	application	component	binds	to	itself	by	calling		bindService()	.

Use	bound	services	for	tasks	that	another	app	component	interacts	with	to	perform	interprocess	communication	(IPC).
For	example,	a	bound	service	might	handle	network	transactions,	perform	file	I/O,	play	music,	or	interact	with	a	content
provider.

Note:	A	service	runs	in	the	main	thread	of	its	hosting	process—the	service	doesn't	create	its	own	thread	and	doesn't	run	in
a	separate	process	unless	you	specify	that	it	should.

If	your	service	is	going	to	do	any	CPU-intensive	work	or	blocking	operations	(such	as	MP3	playback	or	networking),	create
a	new	thread	within	the	service	to	do	that	work.	By	using	a	separate	thread,	you	reduce	the	risk	of	Application	Not
Responding	(ANR)	errors,	and	the	application's	main	thread	can	remain	dedicated	to	user	interaction	with	your	activities.
To	implement	any	kind	of	service	in	your	app:

1.	 Declare	the	service	in	the	manifest.
2.	 Create	implementation	code,	as	described	in	Started	services	and	Bound	services,	below.
3.	 Manage	the	service	lifecycle.

Declaring	services	in	the	manifest
As	with	activities	and	other	components,	you	must	declare	all	services	in	your	application's	manifest	file.	To	declare	a
service,	add	a		<service>		element	as	a	child	of	the		<application>		element.	For	example:

7.4:	Services

300

<manifest	...	>

		...

		<application	...	>

						<service	android:name="ExampleService"

															android:exported="false"	/>

						...

		</application>

</manifest>

To	block	access	to	a	service	from	other	applications,	declare	the	service	as	private.	To	do	this,	set	the		android:exported	
attribute	to		false	.	This	stops	other	apps	from	starting	your	service,	even	when	they	use	an	explicit	intent.

Started	services
How	a	service	starts:

1.	 An	application	component	such	as	an	activity	calls		startService()		and	passes	in	an		Intent	.	The		Intent		specifies
the	service	and	includes	any	data	for	the	service	to	use.

2.	 The	system	calls	the	service's		onCreate()		method	and	any	other	appropriate	callbacks	on	the	main	thread.	It's	up	to
the	service	to	implement	these	callbacks	with	the	appropriate	behavior,	such	as	creating	a	secondary	thread	in	which
to	work.

3.	 The	system	calls	the	service's		onStartCommand()		method,	passing	in	the		Intent		supplied	by	the	client	in	step	1.	(The
client	in	this	context	is	the	application	component	that	calls	the	service.)

Once	started,	a	service	can	run	in	the	background	indefinitely,	even	if	the	component	that	started	it	is	destroyed.	Usually,	a
started	service	performs	a	single	operation	and	does	not	return	a	result	to	the	caller.	For	example,	it	might	download	or
upload	a	file	over	the	network.	When	the	operation	is	done,	the	service	should	stop	itself	by	calling		stopSelf()	,	or	another
component	can	stop	it	by	calling		stopService()	.

For	instance,	suppose	an	activity	needs	to	save	data	to	an	online	database.	The	activity	starts	a	companion	service	by
passing	an		Intent		to		startService()	.	The	service	receives	the	intent	in		onStartCommand()	,	connects	to	the	Internet,	and
performs	the	database	transaction.	When	the	transaction	is	done,	the	service	uses		stopSelf()		to	stop	itself	and	is
destroyed.	(This	is	an	example	of	a	service	you	want	to	run	in	a	worker	thread	instead	of	the	main	thread.)

IntentService

Most	started	services	don't	need	to	handle	multiple	requests	simultaneously,	and	if	they	did	it	could	be	a	dangerous	multi-
threading	scenario.	For	this	reason,	it's	probably	best	if	you	implement	your	service	using	the		IntentService		class.

	IntentService		is	a	useful	subclass	of		Service	:

	IntentService		automatically	provides	a	worker	thread	to	handle	your		Intent	.
	IntentService		handles	some	of	the	boilerplate	code	that	regular	services	need	(such	as	starting	and	stopping	the
service).
	IntentService		can	create	a	work	queue	that	passes	one	intent	at	a	time	to	your		onHandleIntent()		implementation,	so
you	don't	have	to	worry	about	multi-threading.

To	implement		IntentService	:

1.	 Provide	a	small	constructor	for	the	service.
2.	 Create	an	implementation	of		onHandleIntent()		to	do	the	work	that	the	client	provides.

Here's	an	example	implementation	of		IntentService	:

7.4:	Services

301

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/IntentService.html

public	class	HelloIntentService	extends	IntentService	{

		/**

			*	A	constructor	is	required,	and	must	call	the	super	IntentService(String)

			*	constructor	with	a	name	for	the	worker	thread.

			*/

		public	HelloIntentService()	{

						super("HelloIntentService");

		}

		/**

			*	The	IntentService	calls	this	method	from	the	default	worker	thread	with

			*	the	intent	that	started	the	service.	When	this	method	returns,	IntentService

			*	stops	the	service,	as	appropriate.

			*/

		@Override

		protected	void	onHandleIntent(Intent	intent)	{

						//	Normally	we	would	do	some	work	here,	like	download	a	file.

						//	For	our	sample,	we	just	sleep	for	5	seconds.

						try	{

										Thread.sleep(5000);

						}	catch	(InterruptedException	e)	{

										//	Restore	interrupt	status.

										Thread.currentThread().interrupt();

						}

		}

}

Bound	services
A	service	is	"bound"	when	an	application	component	binds	to	it	by	calling		bindService()	.	A	bound	service	offers	a	client-
server	interface	that	allows	components	to	interact	with	the	service,	send	requests,	and	get	results,	sometimes	using
interprocess	communication	(IPC)	to	send	and	receive	information	across	processes.	A	bound	service	runs	only	as	long	as
another	application	component	is	bound	to	it.	Multiple	components	can	bind	to	the	service	at	once,	but	when	all	of	them
unbind,	the	service	is	destroyed.

A	bound	service	generally	does	not	allow	components	to	start	it	by	calling		startService()	.

Implementing	a	bound	service

To	implement	a	bound	service,	define	the	interface	that	specifies	how	a	client	can	communicate	with	the	service.	This
interface,	which	your	service	returns	from	the		onBind()		callback	method,	must	be	an	implementation	of		IBinder	.

To	retrieve	the		IBinder		interface,	a	client	application	component	calls		bindService()	.	Once	the	client	receives	the
	IBinder	,	the	client	interacts	with	the	service	through	that	interface.

There	are	multiple	ways	to	implement	a	bound	service,	and	the	implementation	is	more	complicated	than	a	started	service.
For	complete	details	about	bound	services,	see	Bound	Services.

Binding	to	a	service
To	bind	to	a	service	that	is	declared	in	the	manifest	and	implemented	by	an	app	component,	use		bindService()		with	an
explicit		Intent	.

Caution:	Do	not	use	an	implicit	intent	to	bind	to	a	service.	Doing	so	is	a	security	hazard,	because	you	can't	be	certain	what
service	will	respond	to	your	intent,	and	the	user	can't	see	which	service	starts.	Beginning	with	Android	5.0	(API	level	21),
the	system	throws	an	exception	if	you	call		bindService()		with	an	implicit		Intent	.

Service	lifecycle

7.4:	Services

302

https://developer.android.com/reference/android/os/IBinder.html
https://developer.android.com/guide/components/bound-services.html
https://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/guide/components/intents-filters.html#Types

The	lifecycle	of	a	service	is	simpler	than	that	of	an	activity.	However,	it's	even	more	important	that	you	pay	close	attention	to
how	your	service	is	created	and	destroyed.	Because	a	service	has	no	UI,	services	can	continue	to	run	in	the	background
with	no	way	for	the	user	to	know,	even	if	the	user	switches	to	another	application.	This	consumes	resources	and	drains
battery.

Like	an	activity,	a	service	has	lifecycle	callback	methods	that	you	can	implement	to	monitor	changes	in	the	service's	state
and	perform	work	at	the	appropriate	times.	The	following	skeleton	service	demonstrates	each	of	the	lifecycle	methods:

public	class	ExampleService	extends	Service	{

				int	mStartMode;							//	indicates	how	to	behave	if	the	service	is	killed

				IBinder	mBinder;						//	interface	for	clients	that	bind

				boolean	mAllowRebind;	//	indicates	whether	onRebind	should	be	used

				@Override

				public	void	onCreate()	{

								//	The	service	is	being	created

				}

				@Override

				public	int	onStartCommand(Intent	intent,	int	flags,	int	startId)	{

								//	The	service	is	starting,	due	to	a	call	to	startService()

								return	mStartMode;

				}

				@Override

				public	IBinder	onBind(Intent	intent)	{

								//	A	client	is	binding	to	the	service	with	bindService()

								return	mBinder;

				}

				@Override

				public	boolean	onUnbind(Intent	intent)	{

								//	All	clients	have	unbound	with	unbindService()

								return	mAllowRebind;

				}

				@Override

				public	void	onRebind(Intent	intent)	{

								//	A	client	is	binding	to	the	service	with	bindService(),

								//	after	onUnbind()	has	already	been	called

				}

				@Override

				public	void	onDestroy()	{

								//	The	service	is	no	longer	used	and	is	being	destroyed

				}

}

Lifecycle	of	started	services	vs.	bound	services

A	bound	service	exists	only	to	serve	the	application	component	that's	bound	to	it,	so	when	no	more	components	are	bound
to	the	service,	the	system	destroys	it.	Bound	services	don't	need	to	be	explicitly	stopped	the	way	started	services	do	(using
	stopService()		or		stopSelf()).

7.4:	Services

303

The	diagram	below	shows	a	comparison	between	the	started	and	bound	service	lifecycles.	

Foreground	services
While	most	services	run	in	the	background,	some	run	in	the	foreground.	A	foreground	service	is	a	service	that	the	user	is
aware	of,	so	it's	not	a	candidate	for	the	system	to	kill	when	low	on	memory.

For	example,	a	music	player	that	plays	music	from	a	service	should	be	set	to	run	in	the	foreground,	because	the	user	is
aware	of	its	operation.	The	notification	in	the	status	bar	might	indicate	the	current	song	and	allow	the	user	to	launch	an
activity	to	interact	with	the	music	player.

To	request	that	a	service	run	in	the	foreground,	call		startForeground()		instead	of		startService()	.	This	method	takes	two
parameters:	an	integer	that	uniquely	identifies	the	notification	and	the		Notification		for	the	status	bar.	This	notification	is
ongoing,	meaning	that	it	can't	be	dismissed.	It	stays	in	the	status	bar	until	the	service	is	stopped	or	removed	from	the
foreground.

For	example:

NotificationCompat.Builder	mBuilder	=

								new	NotificationCompat.Builder(this)

								.setSmallIcon(R.drawable.notification_icon)

								.setContentTitle("My	notification")

								.setContentText("Hello	World!");

startForeground(ONGOING_NOTIFICATION_ID,	mBuilder.build());

Note:	The	integer	ID	you	give	to		startForeground()		must	not	be	0.
To	remove	the	service	from	the	foreground,	call		stopForeground()	.	This	method	takes	a	boolean,	indicating	whether	to
remove	the	status	bar	notification.	This	method	doesn't	stop	the	service.	However,	if	you	stop	the	service	while	it's	still
running	in	the	foreground,	then	the	notification	is	also	removed.

7.4:	Services

304

https://developer.android.com/reference/android/app/Notification.html

Scheduled	services
For	API	level	21	and	higher,	you	can	launch	services	using	the		JobScheduler		API.	To	use		JobScheduler	,	you	need	to
register	jobs	and	specify	their	requirements	for	network	and	timing.	The	system	schedules	jobs	for	execution	at	appropriate
times.

The		JobScheduler		interface	provides	many	methods	to	define	service-execution	conditions.	For	details,	see	the
	JobScheduler	reference	.

Learn	more
Services	guide
Running	in	a	Background	Service

7.4:	Services

305

https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/training/run-background-service/index.html

8.1:	Notifications
Contents:

Introduction
What	is	a	notification?
Creating	notifications
Delivering	notifications
Reusing	notifications
Clearing	notifications
Notification	compatibility
Notification	design	guidelines
Related	practical
Learn	more

In	this	chapter	you	learn	how	to	create,	deliver,	and	reuse	notifications,	and	how	to	make	them	compatible	for	different
Android	versions.

What	is	a	notification?
A	notification	is	a	message	your	app	displays	to	the	user	outside	your	application's	normal	UI.	When	you	tell	the	system	to
issue	a	notification,	the	notification	first	appears	to	the	user	as	an	icon	in	the	notification	area,	on	the	left	side	of	the	status

bar.	

To	see	the	details	of	the	notification,	the	user	opens	the	notification	drawer,	or	views	the	notification	on	the	lock	screen	if
the	device	is	locked.	The	notification	area,	the	lock	screen,	and	the	notification	drawer	are	system-controlled	areas	that	the
user	can	view	at	any	time.

8.1:	Notifications

306

8.1:	Notifications

307

The	screenshot	shows	an	"open"	notification	drawer.	The	the	status	bar	isn't	visible,	because	the	notification	drawer	is
open.

This	process	is	described	below.

Creating	notifications
You	create	a	notification	using	the		NotificationCompat.Builder		class.	(Use		NotificationCompat		for	the	best	backward
compatibility.	For	more	information,	see	Notification	compatibility.)	The	builder	classes	simplify	the	creation	of	complex
objects.

To	create	a		NotificationCompat.Builder	,	pass	the	application	context	to	the	constructor:

NotificationCompat.Builder	mBuilder	=	new	NotificationCompat.Builder(this);

Setting	notification	components

When	using	NotificationCompat.Builder,	you	must	assign	a	small	icon,	text	for	a	title,	and	the	notification	message.	You
should	keep	the	notification	message	shorter	than	40	characters	and	not	repeat	what's	in	the	title.	For	example:

NotificationCompat.Builder	mBuilder	=

				new	NotificationCompat.Builder(this)

				.setSmallIcon(R.drawable.notification_icon)

				.setContentTitle("Dinner	is	ready!")

				.setContentText("Lentil	soup,	rice	pilaf,	and	cake	for	dessert.");

You	also	need	to	set	an		Intent		that	determines	what	happens	when	the	user	clicks	the	notification.	Usually	this	Intent
results	in	your	app	launching	an	Activity.

To	make	sure	the	system	delivers	the		Intent		even	when	your	app	isn't	running	when	the	user	clicks	the	notification,	wrap
the		Intent		in	a		PendingIntent		object,	which	allows	the	system	to	deliver	the		Intent		regardless	of	the	app	state.

To	instantiate	a		PendingIntent	,	use	one	of	the	following	methods,	depending	on	how	you	want	the	contained		Intent		to	be
delivered:

To	launch	an	Activity	when	a	user	clicks	on	the	notification,	use		PendingIntent.getActivity()	,	passing	in	an	explicit
	Intent		for	the	Activity	you	want	to	launch.	The		getActivity()		method	corresponds	to	an		Intent		delivered	using
	startActivity()	.
For	an		Intent		passed	into		startService()		(for	example	a	service	to	download	a	file),	use
	PendingIntent.getService()	.
For	a	broadcast		Intent		delivered	with		sendBroadcast()	,	use		PendingIntent.getBroadcast()	.

Each	of	these		PendingIntent		methods	take	the	following	arguments:

The	application	context.
A	request	code,	which	is	a	constant	integer	ID	for	the		PendingIntent	.
The		Intent		to	be	delivered.
A		PendingIntent		flag	that	determines	how	the	system	handles	multiple		PendingIntent		objects	from	the	same
application.

For	example:

Intent	contentIntent	=	new	Intent(this,	ExampleActivity.class);

PendingIntent	pendingContentIntent	=	PendingIntent.getActivity(this,	0,	

				contentIntent,	PendingIntent.FLAG_UPDATE_CURRENT);

mBuilder.setContentIntent(pendingContentIntent);

8.1:	Notifications

308

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://developer.android.com/reference/android/app/PendingIntent.html

To	learn	more	about		PendingIntent	,	see	the		PendingIntent	documentation	.

Optional	components

You	can	use	various	options	with	notifications,	including:

Notification	actions
Priorities
Expanded	layouts
Ongoing	notifications

For	other	options	you	can	use	with	notifications,	see	the		NotificationCompat.Builder		reference.

Notification	actions
A	notification	action	is	an	action	that	the	user	can	take	on	the	notification.	The	action	is	made	available	via	an	action	button
on	the	notification.	Like	the		Intent		that	determines	what	happens	when	the	user	clicks	the	notification,	a	notification	action
uses	a		PendingIntent		to	complete	the	action.	The	Android	system	usually	displays	a	notification	action	as	a	button
adjacent	to	the	notification	content.	Starting	with	Android	4.1	(API	level	16),	notifications	support	icons	embedded	below	the

content	text,	as	shown	in	the	screenshot	below.	

1.	 This	notification	has	two	actions	that	the	user	can	take,	"Reply,"	or	"Archive."	Each	has	an	icon.

To	add	a	notification	action,	use	the		addAction()		method	with	the		NotificationCompat.Builder		object.	Pass	in	the	icon,
the	title	string	and	the		PendingIntent		to	trigger	when	the	user	taps	the	action.	For	example:

mBuilder.addAction(R.drawable.car,	"Get	Directions",	mapPendingIntent);

To	ensure	that	an	action	button's	functionality	is	always	available,	follow	the	instructions	in	the	Notification	compatibility
section,	below.

Notification	priority

Android	allows	you	to	assign	a	priority	level	to	each	notification	to	influence	how	the	Android	system	will	deliver	it.
Notifications	have	a	priority	between		MIN		(-2)	and		MAX		(2)	that	corresponds	to	their	importance.	The	following	table
shows	the	available	priority	constants	defined	in	the		Notification		class.

8.1:	Notifications

309

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#addAction(android.support.v4.app.NotificationCompat.Action)
https://developer.android.com/reference/android/app/Notification.html

Priority	Constant Use

PRIORITY_MAX For	critical	and	urgent	notifications	that	alert	the	user	to	a	condition	that	is	time-critical	or
needs	to	be	resolved	before	they	can	continue	with	a	time-critical	task.

PRIORITY_HIGH Primarily	for	important	communication,	such	as	messages	or	chats.

PRIORITY_DEFAULT For	all	notifications	that	don't	fall	into	any	of	the	other	priorities	described	here.

PRIORITY_LOW For	information	and	events	that	are	valuable	or	contextually	relevant,	but	aren't	urgent	or
time-critical.

PRIORITY_MIN For	nice-to-know	background	information.	For	example,	weather	or	nearby	places	of
interest.

To	change	the	priority	of	a	notification,	use	the		setPriority()		method	on	the		NotificationCompat.Builder		object,	passing
in	one	of	the	above	constants.

mBuilder.setPriority(Notification.PRIORITY_HIGH);

Notifications	can	be	intrusive.	Using	notification	priority	correctly	is	the	first	step	in	making	sure	that	your	users	don't
uninstall	your	app	because	it's	too	distracting.

Peeking

Notifications	with	a	priority	of		HIGH		or		MAX		can	peek,	which	means	they	slide	briefly	into	view	on	the	user's	current
screen,	no	matter	what	apps	the	user	is	using.	Note	that	on	devices	running	Android	6.0	and	higher,	users	can	block
peeking	by	changing	the	device's	"App	notification"	settings.	This	means	you	can't	rely	on	notifications	peeking,	even	if	you
set	them	up	that	way.

To	create	a	notification	that	can	peek:

1.	 Set	the	priority	to		HIGH		or		MAX	.
2.	 Set	a	sound	or	light	pattern	using	the		setDefaults()		method	on	the	builder,	passing	the		DEFAULTS_ALL		constant.	This

gives	the	notification	a	default	sound,	light	pattern,	and	vibration.

NotificationCompat.Builder	mBuilder	=

				new	NotificationCompat.Builder(this)

				.setSmallIcon(R.drawable.notification_icon)

				.setContentTitle("My	notification")

				.setContentText("Hello	World!")

				.setPriority(PRIORITY_HIGH)

				.setDefaults(DEFAULTS_ALL);

Expanded	view	layouts
Notifications	in	the	notification	drawer	appear	in	two	main	layouts,	normal	view	(which	is	the	default)	and	expanded	view.
Expanded	view	notifications	were	introduced	in	Android	4.1.	Use	them	sparingly,	because	they	take	up	more	space	and
attention	than	normal	view	layouts.

To	create	notifications	that	appear	in	an	expanded	layout,	use	one	of	these	helper	classes:

Use		NotificationCompat.BigTextStyle		for	large-format	notifications	that	include	a	lot	of	text.
Use		NotificationCompat.InboxStyle		for	large-format	notifications	that	include	a	list	of	up	to	five	strings.
Use		Notification.MediaStyle		for	media	playback	notifications.	There	is	currently	no		NotificationCompat		version	of
this	style,	so	it	can	only	be	used	on	devices	with	Android	4.1	or	above.	See	the	Notification	compatibility	section	for
more	information.

8.1:	Notifications

310

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.BigTextStyle.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.InboxStyle.html
https://developer.android.com/reference/android/app/Notification.MediaStyle.html

Use		NotificationCompat.BigPictureStyle	,	shown	in	the	screenshot	below,	for	large-format	notifications	that	include	a

large	image	attachment.	

For	example,	here's	how	you'd	set	the		BigPictureStyle		on	a	notification:

NotificationCompat	notif	=	new	NotificationCompat.Builder(mContext)

				.setContentTitle("New	photo	from	"	+	sender.toString())

				.setContentText(subject)

				.setSmallIcon(R.drawable.new_post)

				.setLargeIcon(aBitmap)

				.setStyle(new	NotificationCompat.BigPictureStyle()

								.bigPicture(aBigBitmap)

								.setBigContentTitle("Large	Notification	Title"))

				.build();

To	learn	more	about	implementing	expanded	styles,	see	the	NotificationCompat.Style	documentation.

Ongoing	notifications

Ongoing	notifications	are	notifications	that	can't	be	dismissed	by	the	user.	Your	app	must	explicitly	cancel	them	by	calling
	cancel()		or		cancelAll()	.	Creating	multiple	ongoing	notifications	is	a	nuisance	to	your	users	since	they	are	unable	to
cancel	the	notification.	Use	ongoing	notifications	sparingly.

To	make	a	notification	ongoing,	set		setOngoing()		to		true	.	Use	ongoing	notifications	to	indicate	background	tasks	that	the
user	actively	engages	with	(such	as	playing	music)	or	tasks	that	occupy	the	device	(such	as	file	downloads,	sync
operations,	and	active	network	connections).

Delivering	notifications
Use	the		NotificationManager		class	to	deliver	notifications:

1.	 Call		getSystemService()	,	passing	in	the		NOTIFICATION_SERVICE		constant,	to	create	an	instance	of
	NotificationManager	.

2.	 Call		notify()		to	deliver	the	notification.	In	the		notify()		method,	pass	in	these	two	values:
A	notification	ID,	which	is	used	to	update	or	cancel	the	notification.
The		NotificationCompat		object	that	you	created	using	the		NotificationCompat.Builder		object.

8.1:	Notifications

311

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.BigPictureStyle.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Style.html
https://developer.android.com/reference/android/app/Notification.Builder.html#setOngoing(boolean)
https://developer.android.com/reference/android/app/NotificationManager.html
https://developer.android.com/reference/android/content/Context.html#NOTIFICATION_SERVICE

The	following	example	creates	a		NotificationManager		instance,	then	builds	and	delivers	a	notification:

mNotifyManager	=	(NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

//Builds	the	notification	with	all	the	parameters

NotificationCompat.Builder	notifyBuilder	=	new	NotificationCompat.Builder(this)

							.setContentTitle(getString(R.string.notification_title))

							.setContentText(getString(R.string.notification_text))

							.setSmallIcon(R.drawable.ic_android)

							.setContentIntent(notificationPendingIntent)

							.setPriority(NotificationCompat.PRIORITY_HIGH)

							.setDefaults(NotificationCompat.DEFAULT_ALL);

//Delivers	the	notification

mNotifyManager.notify(NOTIFICATION_ID,	notifyBuilder.build());

Reusing	notifications
When	you	need	to	issue	a	notification	multiple	times	for	the	same	type	of	event,	you	can	update	a	previous	notification	by
changing	some	of	its	values,	adding	to	it,	or	both.

To	reuse	an	existing	notification:

1.	 Update	a		NotificationCompat.Builder		object	and	build	a		Notification		object	from	it,	as	when	you	first	created	and
built	the	notification.

2.	 Deliver	the	notification	with	the	same	ID	you	used	previously.
Important:	If	the	previous	notification	is	still	visible,	the	system	updates	it	from	the	contents	of	the		Notification	
object.	If	the	previous	notification	has	been	dismissed,	a	new	notification	is	created.

Clearing	notifications
Notifications	remain	visible	until	one	of	the	following	happens:

If	the	notification	can	be	cleared,	it	disappears	when	the	user	dismisses	it	individually	or	by	using	"Clear	All."
If	you	called		setAutoCancel()		when	you	created	the	notification,	the	notification	disappears	when	the	user	clicks	it.
If	you	call		cancel()		for	a	specific	notification	ID,	the	notification	disappears.
If	you	call		cancelAll()	,	all	the	notifications	you've	issued	disappear.

Because	ongoing	notifications	can't	be	dismissed	by	the	user,	your	app	must	cancel	them	by	calling		cancel()		or
	cancelAll()	.

Notification	compatibility
To	ensure	the	best	compatibility,	create	notifications	with		NotificationCompat		and	its	subclasses,	particularly
	NotificationCompat.Builder	.

Keep	in	mind	that	not	all	notification	features	are	available	for	every	Android	version,	even	though	the	methods	to	set	them
are	in	the	support	library	class		NotificationCompat.Builder	.	For	example,	expanded	view	layouts	for	notifications	are	only
available	on	Android	4.1	and	higher,	but	action	buttons	depend	on	expanded	view	layouts.	This	means	that	if	you	use
notification	action	buttons,	they	don't	show	up	on	devices	running	anything	before	Android	4.1.

To	solve	this:

Don't	rely	on	notification	action	buttons	to	carry	out	a	notification's	action;	instead	make	the	action	available	in	an
Activity.	You	may	want	to	add	a	new	Activity	to	do	this.

8.1:	Notifications

312

https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#setAutoCancel(boolean)
https://developer.android.com/reference/android/app/NotificationManager.html#cancel(int)
https://developer.android.com/reference/android/app/NotificationManager.html#cancelAll()
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html

For	example,	if	you	set	a	notification	action	that	provides	a	control	to	stop	and	start	media	playback,	first	implement
this	control	in	an	Activity	in	your	app.

Have	the	Activity	start	when	users	click	the	notification.	To	do	this:

1.	 Create	a		PendingIntent		for	the	Activity.

2.	 Call		setContentIntent()		to	add	the		PendingIntent		to	the	notification.

Use		addAction()		to	add	features	to	the	notification	as	needed.	Remember	that	any	functionality	you	add	also	has	to
be	available	in	the	Activity	that	starts	when	users	click	the	notification.

Notification	design	guidelines
Notifications	always	interrupt	the	user.	As	such	they	must	be	short,	timely,	and	most	of	all,	relevant.

Relevant:	Ask	yourself	whether	this	information	is	essential	for	the	user.	What	happens	if	they	don't	get	the
notification?	For	example,	scheduled	calendar	events	are	likely	relevant.
Timely:	Notifications	need	to	appear	when	they	are	useful.	For	example,	notifying	the	user	when	it's	time	to	leave	for
an	appointment	is	useful.
Short:	Use	as	few	words	as	possible.	Now,	challenge	yourself	to	say	it	with	fewer.

Give	users	the	power	to	choose:

Provide	settings	in	your	app	that	allow	users	to	choose	the	kinds	of	notifications	they	want	to	receive,	and	how	they
want	to	receive	them.

In	addition	to	these	basic	principles,	notifications	have	their	own	design	guidelines:

To	learn	how	to	design	notifications	and	their	interactions,	see	the	Material	Design	notification	patterns	documentation.
To	learn	how	to	design	notifications	and	their	interactions	for	older	Android	versions,	see	Notifications,	Android	4.4	and
Lower.
For	important	details	about	Material	Design	changes	introduced	in	Android	5.0	(API	level	21),	see	the	Material	Design
training.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Notifications

Learn	more
Guides

Notifications
Notification	design	guide

Reference

NotificationCompat.Builder	reference
NotificationCompat.Style	reference

8.1:	Notifications

313

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#setContentIntent(android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#addAction(android.support.v4.app.NotificationCompat.Action)
https://material.google.com/patterns/notifications.html
https://developer.android.com/design/patterns/notifications_k.html
https://developer.android.com/training/material/index.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/81_p_notifications.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/design/patterns/notifications.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Style.html

8.2:	Scheduling	Alarms
Contents:

Introduction
Alarm	types
Alarm	best	practices
Scheduling	an	alarm
Checking	for	an	existing	alarm
Canceling	an	alarm
User-visible	alarms	("alarm	clocks")
Related	practical
Learn	more

You	already	know	how	to	use	broadcast	receivers	to	make	your	app	respond	to	system	events	even	when	your	app	isn't
running.	In	this	chapter,	you'll	learn	how	to	use	alarms	to	schedule	tasks	for	specific	times,	whether	or	not	your	app	is
running	at	the	time	the	alarm	is	set	to	go	off.	Alarms	can	either	be	single	use	or	repeating.	For	example,	you	can	use	a
repeating	alarm	to	schedule	a	download	every	day	at	the	same	time.

To	create	alarms,	you	use	the		AlarmManager		class.	Alarms	in	Android	have	the	following	characteristics:

Alarms	let	you	send	intents	at	set	times	or	intervals.	You	can	use	alarms	with	broadcast	receivers	to	start	services	and
perform	other	operations.
Alarms	operate	outside	your	app,	so	you	can	use	them	to	trigger	events	or	actions	even	when	your	app	isn't	running,
and	even	if	the	device	is	asleep.
When	used	correctly,	alarms	can	help	you	minimize	your	app's	resource	requirements.	For	example,	you	can	schedule
operations	without	relying	on	timers	or	continuously	running	background	services.

When	not	to	use	an	alarm:

For	timing	events	such	as	ticks	and	timeouts,	and	for	timed	operations	that	are	guaranteed	to	happen	during	the
lifetime	of	your	app,	use	the		Handler		class	with		Timer		and		Thread	.	This	approach	gives	Android	better	control	over
system	resources	than	if	you	used	alarms.
For	server	sync	operations,	use		SyncAdapter		with	the	Google	Cloud	Messaging	Service.
For	tasks	that	can	wait	until	conditions	are	favorable,	such	as	when	the	device	is	connected	to	WiFi	and	is	charging
(for	example,	updating	weather	information	or	news	stories),	you	might	not	want	to	use	alarms.	For	these	tasks	on	API
21+	devices,	consider	using		JobScheduler	,	which	you	will	learn	about	in	an	upcoming	lesson.

Alarm	types
There	are	two	general	types	of	alarms	in	Android:	elapsed	real-time	alarms	and	real-time	clock	(RTC)	alarms,	and	both	use
	PendingIntent		objects.

Elapsed	real-time	alarms

Elapsed	real-time	alarms	use	the	time,	in	milliseconds,	since	the	device	was	booted.	Elapsed	real-time	alarms	aren't
affected	by	time	zones,	so	they	work	well	for	alarms	based	on	the	passage	of	time.	For	example,	use	an	elapsed	real-time
alarm	for	an	alarm	that	fires	every	half	hour.

The	AlarmManager	class	provides	two	types	of	elapsed	real-time	alarm:

	ELAPSED_REALTIME	:	Fires	a		PendingIntent		based	on	the	amount	of	time	since	the	device	was	booted,	but	doesn't	wake
the	device.	The	elapsed	time	includes	any	time	during	which	the	device	was	asleep.	All	repeating	alarms	fire	when
your	device	is	next	awake.

8.2:	Scheduling	Alarms

314

https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/java/util/Timer.html
https://developer.android.com/reference/java/lang/Thread.html
https://developer.android.com/training/sync-adapters/creating-sync-adapter.html
https://developers.google.com/cloud-messaging/
https://developer.android.com/reference/android/app/job/JobScheduler.html

	ELAPSED_REALTIME_WAKEUP	:	Fires	the		PendingIntent		after	the	specified	length	of	time	has	elapsed	since	device	boot,
waking	the	device's	CPU	if	the	screen	is	off.	Use	this	alarm	instead	of		ELAPSED_REALTIME		if	your	app	has	a	time
dependency,	for	example	if	it	has	a	limited	window	during	which	to	perform	an	operation.

Real-time	clock	(RTC)	alarms

Real-time	clock	(RTC)	alarms	are	clock-based	alarms	that	use	Coordinated	Universal	Time	(UTC).	Only	choose	an	RTC
alarm	in	these	types	of	situations:

You	need	your	alarm	to	fire	at	a	particular	time	of	day.
The	alarm	time	is	dependent	on	current	locale.

Apps	with	clock-based	alarms	might	not	work	well	across	locales,	because	they	might	fire	at	the	wrong	times.	And	if	the
user	changes	the	device's	time	setting,	it	could	cause	unexpected	behavior	in	your	app.

The		AlarmManager		class	provides	two	types	of	RTC	alarm:

	RTC	:	Fires	the	pending	intent	at	the	specified	time	but	doesn't	wake	up	the	device.	All	repeating	alarms	fire	when	your
device	is	next	awake.
	RTC_WAKEUP	:	Fires	the	pending	intent	at	the	specified	time,	waking	the	device's	CPU	if	the	screen	is	off.

Alarm	best	practices
Alarms	affect	how	your	app	uses	(or	abuses)	system	resources.	For	example,	imagine	a	popular	app	that	syncs	with	a
server.	If	the	sync	operation	is	based	on	clock	time	and	every	instance	of	the	app	connects	to	the	server	at	the	same	time,
the	load	on	the	server	could	result	in	delayed	response	times	or	even	a	"denial	of	service"	condition.

To	avoid	this	problem	and	others,	follow	these	best	practices:

Add	randomness	(jitter)	to	network	requests	that	trigger	as	a	result	of	a	repeating	alarm.	Here's	one	way	to	do	this:
Schedule	an	exact	alarm	that	performs	any	local	work.	"Local	work"	means	anything	that	doesn't	contact	a	server
over	a	network	or	require	data	from	that	server.
Schedule	a	separate	alarm	that	contains	the	network	requests,	and	have	this	alarm	fire	after	a	random	period	of
time.	Usually	this	second	alarm	is	set	by	whatever	component	receives	the		PendingIntent		from	the	first	alarm.
(You	can	also	set	this	alarm	at	the	same	time	as	you	set	the	first	alarm.)

Keep	your	alarm	frequency	to	a	minimum.
Don't	wake	up	the	device	unnecessarily.
Use	the	least	precise	timing	possible	to	allow	the		AlarmManager		to	be	the	most	efficient	it	can	be.	For	example,	when
you	schedule	a	repeating	alarm,	use		setInexactRepeating()		instead	of		setRepeating()	.	For	details,	see	Scheduling	a
repeating	alarm,	below.
Avoid	basing	your	alarm	on	clock	time	and	use		ELAPSED_REALTIME		for	repeating	alarms	whenever	possible.	Repeating
alarms	that	are	based	on	a	precise	trigger	time	don't	scale	well.

Scheduling	an	alarm
The		AlarmManager		class	gives	you	access	to	the	Android	system	alarm	services.		AlarmManager		lets	you	broadcast	an
	Intent		at	a	scheduled	time,	or	after	a	specific	interval.

To	schedule	an	alarm:

1.	 Call		getSystemService(ALARM_SERVICE)		to	get	an	instance	of	the		AlarmManager		class.
2.	 Use	one	of	the		set...()		methods	available	in		AlarmManager		(as	described	below).	Which	method	you	use	depends

on	whether	the	alarm	is	elapsed	real	time,	or	RTC.

All	the		AlarmManager.set...()		methods	include	these	two	arguments:

A		type		argument,	which	is	how	you	specify	the	alarm	type:

8.2:	Scheduling	Alarms

315

https://developer.android.com/reference/android/app/AlarmManager.html

	ELAPSED_REALTIME		or		ELAPSED_REALTIME_WAKEUP	,	described	in	Elapsed	real-time	alarms	above.
	RTC		or		RTC_WAKEUP	,	described	in	Real-time	clock	(RTC)	alarms	above.

A		PendingIntent		object,	which	is	how	you	specify	which	task	to	perform	at	the	given	time.

Scheduling	a	single-use	alarm

To	schedule	a	single	alarm,	use	one	of	the	following	methods	on	the		AlarmManager		instance:

	set()	:	For	devices	running	API	19+,	this	method	schedules	a	single,	inexactly	timed	alarm,	meaning	that	the	system
shifts	the	alarm	to	minimize	wakeups	and	battery	use.	For	devices	running	lower	API	versions,	this	method	schedules
an	exactly	timed	alarm.
	setWindow()	:	For	devices	running	API	19+,	use	this	method	to	set	a	window	of	time	during	which	the	alarm	should	be
triggered.
	setExact()	:	For	devices	running	API	19+,	this	method	triggers	the	alarm	at	an	exact	time.	Use	this	method	only	for
alarms	that	must	be	delivered	at	an	exact	time,	for	example	an	alarm	clock	that	rings	at	a	requested	time.	Exact	alarms
reduce	the	OS's	ability	to	minimize	battery	use,	so	don't	use	them	unnecessarily.

Here's	an	example	of	using		set()		to	schedule	a	single-use	alarm:

alarmMgr.set(AlarmManager.ELAPSED_REALTIME,

													SystemClock.elapsedRealtime()	+	1000*300,

													alarmIntent);

In	this	example:

The		type		is		ELAPSED_REALTIME	,	which	means	that	this	is	an	elapsed	real-time	alarm.	If	the	device	is	idle	when	the
alarm	is	sent,	the	alarm	does	not	wake	the	device.
The	alarm	is	sent	5	minutes	(300,000	milliseconds)	after	the	method	returns.
	alarmIntent		is	a		PendingIntent		broadcast	that	contains	the	action	to	perform	when	the	alarm	is	sent.
Note:	For	timing	operations	like	ticks	and	timeouts,	and	events	that	happen	more	often	than	once	a	minute,	it's	easier
and	more	efficient	to	use	a	Handler	rather	than	an	alarm.

Doze	and	App	Standby
API	23+	devices	sometimes	enter	Doze	or	App	Standby	mode	to	save	power:

Doze	mode	is	triggered	when	a	user	leaves	a	device	unplugged	and	stationary	for	a	period	of	time,	with	the	screen	off.
During	short	"maintenance	windows,"	the	system	exits	Doze	to	let	apps	complete	deferred	activities,	including	firing
standard	alarms,	then	returns	to	Doze.	Doze	mode	ends	when	the	user	returns	to	their	device.
App	Standby	mode	is	triggered	on	idle	apps	that	haven't	been	used	recently.	App	Standby	mode	ends	when	the	user
returns	to	your	app	or	plugs	in	the	device.

To	use	alarms	with	Doze	and	App	Standby:

If	you	need	an	alarm	that	fires	while	a	device	is	in	Doze	or	App	Standby	mode	without	waiting	for	a	maintenance
window,	use		setAndAllowWhileIdle()		for	inexact	and		setExactAndAllowWhileIdle()		for	exact	alarms,	or	set	a	user-
visible	alarm	(API	21+).
Some	alarms	can	wait	for	a	maintenance	window,	or	until	the	device	comes	out	of	Doze	or	App	Standby	mode.	For
these	alarms,	use	the	standard		set()		and		setExact()		methods	to	optimize	battery	life.

Scheduling	a	repeating	alarm

You	can	also	use	the		AlarmManager		to	schedule	repeating	alarms,	using	one	of	the	following	methods:

	setRepeating()	:	Prior	to	Android	4.4	(API	Level	19),	this	method	creates	a	repeating,	exactly	timed	alarm.	On	devices
running	API	19	and	higher,		setRepeating()		behaves	exactly	like		setInexactRepeating()	.
	setInexactRepeating()	:	This	method	creates	a	repeating,	inexact	alarm	that	allows	for	batching.	When	you	use

8.2:	Scheduling	Alarms

316

https://developer.android.com/reference/android/app/AlarmManager.html#ELAPSED_REALTIME
https://developer.android.com/reference/android/app/AlarmManager.html#ELAPSED_REALTIME_WAKEUP
https://developer.android.com/reference/android/app/AlarmManager.html#RTC
https://developer.android.com/reference/android/app/AlarmManager.html#RTC_WAKEUP
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/AlarmManager.html#set(int,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.html#setWindow(int,%20long,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.html#setExact(int,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/app/AlarmManager.html#setRepeating(int,%20long,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.html#setInexactRepeating(int,%20long,%20long,%20android.app.PendingIntent)

	setInexactRepeating()	,	Android	synchronizes	repeating	alarms	from	multiple	apps	and	fires	them	at	the	same	time.
This	reduces	the	total	number	of	times	the	system	must	wake	the	device,	thus	reducing	drain	on	the	battery.	As	of	API
19,	all	repeating	alarms	are	inexact.

To	decrease	possible	battery	drain:

Schedule	repeating	alarms	to	be	as	infrequent	as	possible.
Use	inexact	timing,	which	allows	the	system	to	batch	alarms	from	different	apps	together.

Note:	while		setInexactRepeating()		is	an	improvement	over		setRepeating()	,	it	can	still	overwhelm	a	server	if	every
instance	of	an	app	hits	the	server	around	the	same	time.	Therefore,	for	network	requests,	add	some	randomness	to	your
alarms,	as	described	in	Alarm	best	practices.

If	you	really	need	exact	repeating	alarms	on	API	19+,	set	a	single-use	alarm	with		setExact()		and	set	the	next	alarm	once
that	alarm	has	triggered.	This	second	alarm	is	set	by	whatever	component	receives	the		PendingIntent	—usually	either	a
service	or	a	broadcast	receiver.

Here's	an	example	of	using		setInexactRepeating()		to	schedule	a	repeating	alarm:

alarmMgr.setInexactRepeating(AlarmManager.RTC_WAKEUP,

															calendar.getTimeInMillis(),

															AlarmManager.INTERVAL_FIFTEEN_MINUTES,

															alarmIntent);

In	this	example:

The		type		is		RTC_WAKEUP	,	which	means	that	this	is	a	clock-based	alarm	that	wakes	the	device	when	the	alarm	is	sent.
The	first	occurrence	of	the	alarm	is	sent	immediately,	because		calendar.getTimeInMillis()		returns	the	current	time	as
UTC	milliseconds.
After	the	first	occurrence,	the	alarm	is	sent	approximately	every	15	minutes.

If	the	method	were		setRepeating()		instead	of		setInexactRepeating()	,	and	if	the	device	were	running	an	API	version
lower	than	19,	the	alarm	would	be	sent	exactly	every	15	minutes.

Possible	values	for	this	argument	are		INTERVAL_DAY	,		INTERVAL_FIFTEEN_MINUTES	,		INTERVAL_HALF_DAY	,
	INTERVAL_HALF_HOUR	,		INTERVAL_HOUR	.

	alarmIntent		is	the		PendingIntent		that	contains	the	action	to	perform	when	the	alarm	is	sent.	This	intent	typically
comes	from		IntentSender.getBroadcast()	.

Checking	for	an	existing	alarm
It's	often	useful	to	check	whether	an	alarm	is	already	set.	For	example,	you	may	want	to	disable	the	ability	to	set	another
alarm	if	one	already	exists.

To	check	for	an	existing	alarm:

1.	 Create	a		PendingIntent		that	contains	the	same		Intent		used	to	set	the	alarm,	but	this	time	use	the		FLAG_NO_CREATE	
flag.

With		FLAG_NO_CREATE	,	a		PendingIntent		is	only	created	if	one	with	the	same		Intent		already	exists.	Otherwise,	the
request	returns		null	.

2.	 Check	whether	the		PendingIntent		is		null	:
If	it's		null	,	the	alarm	has	not	yet	been	set.
If	it's	not		null	,	the		PendingIntent		already	exists,	meaning	that	the	alarm	has	been	set.

For	example,	the	following	code	returns		true		if	the	alarm	contained	in		alarmIntent		already	exists:

8.2:	Scheduling	Alarms

317

https://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context,%20int,%20android.content.Intent,%20int)
https://developer.android.com/reference/android/app/PendingIntent.html#FLAG_NO_CREATE

boolean	alarmExists	=

	(PendingIntent.getBroadcast(this,	0,

							alarmIntent,

							PendingIntent.FLAG_NO_CREATE)	!=	null);

Canceling	an	alarm
To	cancel	an	alarm,	use		cancel()		and	pass	in	the		PendingIntent	.	For	example:

alarmManager.cancel(alarmIntent);

User-visible	alarms	("alarm	clocks")
For	API	21+	devices,	you	can	set	a	user-visible	alarm	clock	by	calling		setAlarmClock()	.	Apps	can	retrieve	the	next	user-
visible	alarm	clock	that's	set	to	go	off	by	calling		getNextAlarmClock()	.

Alarms	clocks	set	with		setAlarmClock()		work	even	when	the	device	or	app	is	idle	(similar	to		setExactAndAllowWhileIdle()),
which	gets	you	as	close	to	an	exact	wake	up	call	as	possible.

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Alarm	Manager

Learn	more
Schedule	Repeating	Alarms	Guide
AlarmManager	reference
Choosing	an	Alarm	Blog	Post
Scheduling	Alarms	Presentation

8.2:	Scheduling	Alarms

318

https://developer.android.com/reference/android/app/AlarmManager.html#cancel(android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.html#setAlarmClock(android.app.AlarmManager.AlarmClockInfo,%20android.app.PendingIntent)
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/82_p_alarm_manager.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/reference/android/app/AlarmManager.html
https://plus.google.com/+AndroidDevelopers/posts/GdNrQciPwqo
https://www.youtube.com/watch?v=7maNuWjL3Wc

8.3:	Transferring	Data	Efficiently
Contents:

Wireless	radio	state
Bundling	network	transfers
Prefetching
Monitor	connectivity	state
Monitor	battery	state
JobScheduler
Related	practical
Learn	more

Transferring	data	is	an	essential	part	of	most	Android	applications,	but	it	can	negatively	affect	battery	life	and	increase	data
usage	costs.	Using	the	wireless	radio	to	transfer	data	is	potentially	one	of	your	app's	most	significant	sources	of	battery
drain.

Users	care	about	battery	drain	because	they	would	rather	use	their	mobile	device	without	it	connected	to	the	charger.	And
users	care	about	data	usage,	because	every	bit	of	data	transferred	can	cost	them	money.

In	this	chapter,	you	learn	how	your	app's	networking	activity	affects	the	device's	radio	hardware	so	you	can	minimize	the
battery	drain	associated	with	network	activity.	You	also	learn	how	to	wait	for	the	proper	conditions	to	accomplish	resource-
intensive	tasks.

Wireless	radio	state
A	fully	active	wireless	radio	consumes	significant	power.	To	conserve	power	when	not	in	use,	the	radio	transitions	between
different	energy	states.	However,	there	is	a	trade-off	between	conserving	power	and	the	time	it	takes	to	power	up	when
needed.

For	a	typical	3G	network	the	radio	has	these	three	energy	states:

1.	 Full	power:	Used	when	a	connection	is	active.	Allows	the	device	to	transfer	data	at	its	highest	possible	rate.
2.	 Low	power:	An	intermediate	state	that	uses	about	50%	less	battery.
3.	 Standby:	The	minimal	energy	state,	during	which	no	network	connection	is	active	or	required.

While	the	low	and	standby	states	use	much	less	battery,	they	also	introduce	latency	to	network	requests.	Returning	to	full
power	from	the	low	state	takes	around	1.5	seconds,	while	moving	from	standby	to	full	can	take	over	2	seconds.

Android	uses	a	state	machine	to	determine	how	to	transition	between	states.	To	minimize	latency,	the	state	machine	waits	a
short	time	before	it	transitions	to	the	lower	energy	states.	

The	radio	state	machine	on	each	device,	particularly	the	associated	transition	delay	("tail	time")	and	startup	latency,	vary
based	on	the	wireless	radio	technology	employed	(2G,	3G,	LTE,	etc.)	and	is	defined	and	configured	by	the	carrier	network
over	which	the	device	is	operating.

8.3:	Transferring	Data	Efficiently

319

This	chapter	describes	a	representative	state	machine	for	a	typical	3G	wireless	radio,	based	on	data	provided	by	AT&T.
However,	the	general	principles	and	resulting	best	practices	are	applicable	for	all	wireless	radio	implementations.

As	with	any	best	practices,	there	are	trade-offs	that	you	need	to	consider	for	your	own	app	development.

Bundling	network	transfers
Every	time	you	create	a	new	network	connection,	the	radio	transitions	to	the	full	power	state.	In	the	case	of	the	3G	radio
state	machine	described	above,	it	remains	at	full	power	for	the	duration	of	your	transfer,	followed	by	5	seconds	of	tail	time,
followed	by	12	seconds	at	the	low	energy	state	before	turning	off.	So,	for	a	typical	3G	device,	every	data	transfer	session
causes	the	radio	to	draw	power	for	almost	20	seconds.

What	this	means	in	practice:

An	app	that	transfers	unbundled	data	for	1	second	every	18	seconds	keeps	the	wireless	radio	always	active.
By	comparison,	the	same	app	bundling	transfers	for	3	seconds	of	every	minute	keeps	the	radio	in	the	high	power	state
for	only	8	seconds,	and	in	the	low	power	state	for	an	additional	12	seconds.

The	second	example	allows	the	radio	to	be	idle	for	40	seconds	out	of	every	minute,	resulting	in	a	massive	reduction	in
battery	consumption.	

It's	important	to	bundle	and	queue	up	your	data	transfers.	You	can	bundle	transfers	that	are	due	to	occur	within	a	time
window	and	make	them	all	happen	simultaneously,	ensuring	that	the	radio	draws	power	for	as	little	time	as	possible.

Prefetching
To	prefetch	data	means	that	your	app	takes	a	guess	at	what	content	or	data	the	user	will	want	next,	and	fetches	it	ahead	of
time.	For	example,	when	the	user	looks	at	the	first	part	of	an	article,	a	good	guess	is	to	prefetch	the	next	part.	Or,	if	a	user
is	watching	a	video,	fetching	the	next	minutes	of	the	video	is	also	a	good	guess.

Prefetching	data	is	an	effective	way	to	reduce	the	number	of	independent	data	transfer	sessions.	Prefetching	allows	you	to
download	all	the	data	you	are	likely	to	need	for	a	given	time	period	in	a	single	burst,	over	a	single	connection,	at	full
capacity.	This	reduces	the	number	of	radio	activations	required	to	download	the	data.	As	a	result,	you	not	only	conserve
battery	life,	but	also	improve	latency	for	the	user,	lower	the	required	bandwidth,	and	reduce	download	times.

Prefetching	has	trade-offs.	If	you	download	too	much	or	the	wrong	data,	you	might	increase	battery	drain.	And	if	you
download	at	the	wrong	time,	users	may	end	up	waiting.	Optimizing	prefetching	data	is	an	advanced	topic	not	covered	in
this	course,	but	the	following	guidelines	cover	common	situations.

How	aggressively	you	prefetch	depends	on	the	size	of	the	data	being	downloaded	and	the	likelihood	of	it	being	used.	As	a
rough	guide,	based	on	the	state	machine	described	above,	for	data	that	has	a	50%	chance	of	being	used	within	the	current
user	session,	you	can	typically	prefetch	for	around	6	seconds	(approximately	1-2	Mb)	before	the	potential	cost	of

8.3:	Transferring	Data	Efficiently

320

http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient?fbid=1zObBOMOZSB

downloading	unused	data	matches	the	potential	savings	of	not	downloading	that	data	to	begin	with.

Generally	speaking,	it's	good	practice	to	prefetch	data	such	that	you	only	need	to	initiate	another	download	every	2	to	5
minutes,	and	on	the	order	of	1	to	5	megabytes.

Following	this	principle,	large	downloads—such	as	video	files—should	be	downloaded	in	chunks	at	regular	intervals	(every
2	to	5	minutes),	effectively	prefetching	only	the	video	data	likely	to	be	viewed	in	the	next	few	minutes.

Prefetching	example
Many	news	apps	attempt	to	reduce	bandwidth	by	downloading	headlines	only	after	a	category	has	been	selected,	full
articles	only	when	the	user	wants	to	read	them,	and	thumbnails	just	as	they	scroll	into	view.

Using	this	approach,	the	radio	is	forced	to	remain	active	for	the	majority	of	a	news-reading	session	as	users	scroll
headlines,	change	categories,	and	read	articles.	Not	only	that,	but	the	constant	switching	between	energy	states	results	in
significant	latency	when	switching	categories	or	reading	articles.

Here's	a	better	approach:

1.	 Prefetch	a	reasonable	amount	of	data	at	startup,	beginning	with	the	first	set	of	news	headlines	and	thumbnails.	This
ensures	a	quick	startup	time.

2.	 Continue	with	the	remaining	headlines,	the	remaining	thumbnails,	and	the	article	text	for	each	article	from	the	first	set
of	headlines.

Monitor	connectivity	state
Devices	can	network	using	different	types	of	hardware:

Wireless	radios	use	varying	amounts	of	battery	depending	on	technology,	and	higher	bandwidth	consumes	more
energy.	Higher	bandwidth	means	you	can	prefetch	more	aggressively,	downloading	more	data	during	the	same	amount
of	time.	However,	perhaps	less	intuitively,	because	the	tail-time	battery	cost	is	relatively	higher,	it	is	also	more	efficient
to	keep	the	radio	active	for	longer	periods	during	each	transfer	session	to	reduce	the	frequency	of	updates.
WiFi	radio	uses	significantly	less	battery	than	wireless	and	offers	greater	bandwidth.

Perform	data	transfers	when	connected	over	Wi-Fi	whenever	possible.

You	can	use	the		ConnectivityManager		to	determine	the	active	wireless	radio	and	modify	your	prefetching	routines
depending	on	network	type:

8.3:	Transferring	Data	Efficiently

321

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjc4pqM3e_QAhUD3GMKHScPAQ0QFggcMAA&url=https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2Fnet%2FConnectivityManager.html&usg=AFQjCNFDdEYPDpyHa2Aw42YMibNABSQYww&sig2=I3wzWUuhRVk4XCFjX3WBnw

ConnectivityManager	cm	=

			(ConnectivityManager)getSystemService(Context.CONNECTIVITY_SERVICE);

TelephonyManager	tm	=

				(TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);

NetworkInfo	activeNetwork	=	cm.getActiveNetworkInfo();

int	PrefetchCacheSize	=	DEFAULT_PREFETCH_CACHE;

switch	(activeNetwork.getType())	{

				case	(ConnectivityManager.TYPE_WIFI):

								PrefetchCacheSize	=	MAX_PREFETCH_CACHE;	break;

				case	(ConnectivityManager.TYPE_MOBILE):	{

								switch	(tm.getNetworkType())	{

											case	(TelephonyManager.NETWORK_TYPE_LTE	|

																		TelephonyManager.NETWORK_TYPE_HSPAP):

																PrefetchCacheSize	*=	4;

																break;

												case	(TelephonyManager.NETWORK_TYPE_EDGE	|

																		TelephonyManager.NETWORK_TYPE_GPRS):

															PrefetchCacheSize	/=	2;

															break;

												default:	break;

								}

								break;

						}

		default:	break;

		}

The	system	sends	out	broadcast	intents	when	the	connectivity	state	changes,	so	you	can	listen	for	these	changes	using	a
	BroadcastReceiver	.

Monitor	battery	state
To	minimize	battery	drain,	monitor	the	state	of	your	battery	and	wait	for	specific	conditions	before	initiating	a	battery-
intensive	operation.

The		BatteryManager		broadcasts	all	battery	and	charging	details	in	a	broadcast		Intent		that	includes	the	charging	status.

To	check	the	current	battery	status,	examine	the	broadcast	intent:

IntentFilter	ifilter	=	new	IntentFilter(Intent.ACTION_BATTERY_CHANGED);

Intent	batteryStatus	=	context.registerReceiver(null,	ifilter);

//	Are	we	charging	/	charged?

int	status	=	batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS,	-1);

boolean	isCharging	=	status	==	BatteryManager.BATTERY_STATUS_CHARGING	||

																					status	==	BatteryManager.BATTERY_STATUS_FULL;

//	How	are	we	charging?

int	chargePlug	=	batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED,	-1);

boolean	usbCharge	=	chargePlug	==	BatteryManager.BATTERY_PLUGGED_USB;

boolean	acCharge	=	chargePlug	==	BatteryManager.BATTERY_PLUGGED_AC;

If	you	want	to	react	to	changes	in	the	battery	charging	state,	use	a		BroadcastReceiver		registered	for	the	battery	status
actions:

<receiver	android:name=".PowerConnectionReceiver">

		<intent-filter>

				<action	android:name="android.intent.action.ACTION_POWER_CONNECTED"/>

				<action	android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>

		</intent-filter>

</receiver>

Broadcast	intents	are	also	delivered	when	the	battery	level	changes	in	a	significant	way:

8.3:	Transferring	Data	Efficiently

322

https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/os/BatteryManager.html
https://developer.android.com/reference/android/content/Intent.html

"android.intent.action.BATTERY_LOW"

"android.intent.action.BATTERY_OKAY"

JobScheduler
Constantly	monitoring	the	connectivity	and	battery	status	of	the	device	can	be	a	challenge,	and	it	requires	using
components	such	as	broadcast	receivers,	which	can	consume	system	resources	even	when	your	app	isn't	running.
Because	transferring	data	efficiently	is	such	a	common	task,	the	Android	SDK	provides	a	class	that	makes	this	much
easier:		JobScheduler	.

Introduced	in	API	level	21,		JobScheduler		allows	you	to	schedule	a	task	around	specific	conditions	(rather	than	a	specific
time	as	with		AlarmManager).

	JobScheduler		has	three	components:

1.	 	JobInfo		uses	the	builder	pattern	to	set	the	conditions	for	the	task.
2.	 	JobService		is	a	wrapper	around	the		Service		class	where	the	task	is	actually	completed.
3.	 	JobScheduler		schedules	and	cancels	tasks.

Note:		JobScheduler		is	only	available	from	API	21+.	There	is	no	backwards	compatible	version	for	prior	API	releases.	If
your	app	targets	devices	with	earlier	API	levels,	you	might	find	the	FirebaseJobDispatcher	a	useful	alternative.

1.	JobInfo
Set	the	job	conditions	by	constructing	a		JobInfo		object	using	the		JobInfo.Builder		class.	The		JobInfo.Builder		class	is
instantiated	from	a	constructor	that	takes	two	arguments:	a	job	ID	(which	can	be	used	to	cancel	the	job),	and	the
	ComponentName		of	the		JobService		that	contains	the	task.	Your		JobInfo.Builder		must	set	at	least	one,	non-default
condition	for	the	job.	For	example:

JobScheduler	scheduler	=	(JobScheduler)	getSystemService(JOB_SCHEDULER_SERVICE);

ComponentName	serviceName	=	new	ComponentName(getPackageName(),

NotificationJobService.class.getName());

JobInfo.Builder	builder	=	new	JobInfo.Builder(JOB_ID,	serviceName);

builder.setRequiredNetworkType(NETWORK_TYPE_UNMETERED);

JobInfo	jobInfo	=	builder.build();

Note:	See	the	related	practical	for	a	complete	example.
The	JobInfo.Builder	class	has	many		set()		methods	that	allow	you	to	determine	the	conditions	of	the	task.	Below	is	a	list
of	available	constraints	with	their	respective		set()		methods	and	class	constants:

Backoff/Retry	policy:	Determines	when	how	the	task	should	be	rescheduled	if	it	fails.	Set	this	condition	using	the
	setBackoffCriteria()		method,	which	takes	two	arguments:	the	initial	time	to	wait	after	the	task	fails,	and	the	backoff
strategy.	The	backoff	strategy	argument	can	be	one	of	two	constants:		BACKOFF_POLICY_LINEAR		or
	BACKOFF_POLICY_EXPONENTIAL	.	This	defaults	to	{30	seconds,	Exponential}.
Minimum	Latency:	The	minimum	amount	of	time	to	wait	before	completing	the	task.	Set	this	condition	using	the
	setMinimumLatency()		method,	which	takes	a	single	argument:	the	amount	of	time	to	wait	in	milliseconds.
Override	Deadline:	The	maximum	time	to	wait	before	running	the	task,	even	if	other	conditions	aren't	met.	Set	this
condition	using	the		setOverrideDeadline()		method,	which	is	the	maximum	time	to	wait	in	milliseconds.
Periodic:	Repeats	the	task	after	a	certain	amount	of	time.	Set	this	condition	using	the		setPeriodic()		method,	passing
in	the	repetition	interval.	This	condition	is	mutually	exclusive	with	the	minimum	latency	and	override	deadline
conditions:	setting		setPeriodic()		with	one	of	them	results	in	an	error.
Persisted:	Sets	whether	the	job	is	persisted	across	system	reboots.	For	this	condition	to	work,	your	app	must	hold	the
	RECEIVE_BOOT_COMPLETED		permission.	Set	this	condition	using	the		setPersisted()		method,	passing	in	a	boolean	that
indicates	whether	or	not	to	persist	the	task.
Required	Network	Type:	The	kind	of	network	type	your	job	needs.	If	the	network	isn't	necessary,	you	don't	need	to
call	this	function,	because	the	default	is		NETWORK_TYPE_NONE	.	Set	this	condition	using	the		setRequiredNetworkType()	

8.3:	Transferring	Data	Efficiently

323

https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobInfo.html
https://developer.android.com/reference/android/app/job/JobService.html
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://github.com/firebase/firebase-jobdispatcher-android
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html
https://developer.android.com/reference/android/content/ComponentName.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/83_p_job_scheduler.html
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html
https://developer.android.com/reference/android/app/job/JobInfo.html#BACKOFF_POLICY_LINEAR
https://developer.android.com/reference/android/app/job/JobInfo.html#BACKOFF_POLICY_EXPONENTIAL
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED

method,	passing	in	one	of	the	following	constants:		NETWORK_TYPE_NONE	,		NETWORK_TYPE_ANY	,		NETWORK_TYPE_NOT_ROAMING	,
	NETWORK_TYPE_UNMETERED	.
Required	Charging	State:	Whether	or	not	the	device	needs	to	be	plugged	in	to	run	this	job.	Set	this	condition	using
the		setRequiresCharging()		method,	passing	in	a	boolean.	The	default	is		false	.
Requires	Device	Idle:	Whether	or	not	the	device	needs	to	be	in	idle	mode	to	run	this	job.	"Idle	mode"	means	that	the
device	isn't	in	use	and	hasn't	been	for	some	time,	as	loosely	defined	by	the	system.	When	the	device	is	in	idle	mode,
it's	a	good	time	to	perform	resource-heavy	jobs.	Set	this	condition	using	the		setRequiresDeviceIdle()		method,	passing
in	a	boolean.	The	default	is		false	.

2.	JobService

Once	the	conditions	for	a	task	are	met,	the	framework	launches	a	subclass	of		JobService	,	which	is	where	you	implement
the	task	itself.	The		JobService		runs	on	the	UI	thread,	so	you	need	to	offload	blocking	operations	to	a	worker	thread.

Declare	the		JobService		subclass	in	the	Android	Manifest,	and	include	the		BIND_JOB_SERVICE		permission:

<service	android:name="MyJobService"

														android:permission="android.permission.BIND_JOB_SERVICE"	/>

In	your	subclass	of		JobService	,	override	two	methods,		onStartJob()		and		onStopJob()	.

onStartJob()

The	system	calls		onStartJob()		and	automatically	passes	in	a		JobParameters		object,	which	the	system	creates	with
information	about	your	job.	If	your	task	contains	long-running	operations,	offload	the	work	onto	a	separate	thread.	The
	onStartJob()		method	returns	a	boolean:		true		if	your	task	has	been	offloaded	to	a	separate	thread	(meaning	it	might	not
be	completed	yet)	and		false		if	there	is	no	more	work	to	be	done.

Use	the		jobFinished()		method	from	any	thread	to	tell	the	system	that	your	task	is	complete.	This	method	takes	two
parameters:	the		JobParameters		object	that	contains	information	about	the	task,	and	a	boolean	that	indicates	whether	the
task	needs	to	be	rescheduled,	according	to	the	defined	backoff	policy.

onStopJob()

The	system	calls		onStopJob()		if	it	determines	that	you	must	stop	execution	of	your	job	even	before	you've	call
	jobFinished()	.	This	happens	if	the	requirements	that	you	specified	when	you	scheduled	the	job	are	no	longer	met.

Examples:

If	you	request	WiFi	with		setRequiredNetworkType()		but	the	user	turns	off	WiFi	while	while	your	job	is	executing,	the
system	calls		onStopJob()	.
If	you	specify		setRequiresDeviceIdle()		but	the	user	starts	interacting	with	the	device	while	your	job	is	executing,	the
system	calls		onStopJob()	.

You're	responsible	for	how	your	app	behaves	when	it	receives		onStopJob()	,	so	don't	ignore	it.	This	method	returns	a
boolean,	indicating	whether	you'd	like	to	reschedule	the	job	based	on	the	defined	backoff	policy,	or	drop	the	task.

3.	JobScheduler
The	final	part	of	scheduling	a	task	is	to	use	the		JobScheduler		class	to	schedule	the	job.	To	obtain	an	instance	of	this	class,
call		getSystemService(JOB_SCHEDULER_SERVICE)	.	Then	schedule	a	job	using	the		schedule()		method,	passing	in	the		JobInfo	
object	you	created	with	the		JobInfo.Builder	.	For	example:

mScheduler.schedule(myJobInfo);

8.3:	Transferring	Data	Efficiently

324

https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_NONE
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_ANY
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_NOT_ROAMING
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_UNMETERED
https://developer.android.com/reference/android/app/job/JobService.html
https://developer.android.com/reference/android/app/job/JobParameters.html

The	framework	is	intelligent	about	when	you	receive	callbacks,	and	it	attempts	to	batch	and	defer	them	as	much	as
possible.	Typically,	if	you	don't	specify	a	deadline	on	your	job,	the	system	can	run	it	at	any	time,	depending	on	the	current
state	of	the		JobScheduler		object's	internal	queue;	however,	it	might	be	deferred	as	long	as	until	the	next	time	the	device	is
connected	to	a	power	source.

To	cancel	a	job,	call		cancel()	,	passing	in	the	job	ID	from	the		JobInfo.Builder		object,	or	call		cancelAll()	.	For	example:

mScheduler.cancelAll();

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

JobScheduler

Learn	more
Transferring	Data	Without	Draining	the	Battery	Guide
Optimizing	Downloads	for	Efficient	Network	Access	Guide
Modifying	your	Download	Patterns	Based	on	the	Connectivity	Type	Guide
JobScheduler	Reference
JobService	Reference
JobInfo	Reference
JobInfo.Builder	Reference
JobParameters	Reference
Presentation	on	Scheduling	Tasks
What	are	the	different	networks	and	speeds?

8.3:	Transferring	Data	Efficiently

325

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content//Unit%203/83_p_job_scheduler.html
https://developer.android.com/training/efficient-downloads/index.html
https://developer.android.com/training/efficient-downloads/efficient-network-access.html
https://developer.android.com/training/efficient-downloads/connectivity_patterns.html
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobService.html
https://developer.android.com/reference/android/app/job/JobInfo.html
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html
https://developer.android.com/reference/android/app/job/JobParameters.html
https://www.youtube.com/watch?v=7maNuWjL3Wc
https://www.telcoantennas.com.au/site/guide-to-mobile-networks

9.0:	Storing	Data
Contents:

Shared	preferences
Files
SQLite	database
Other	storage	options
Network	connection
Backing	up	app	data
Firebase
Learn	more

Android	provides	several	options	for	you	to	save	persistent	application	data.	The	solution	you	choose	depends	on	your
specific	needs,	such	as	whether	the	data	should	be	private	to	your	application	or	accessible	to	other	applications	(and	the
user)	and	how	much	space	your	data	requires.

Your	data	storage	options	are	the	following:

Shared	preferences—Store	private	primitive	data	in	key-value	pairs.	This	will	be	covered	in	the	next	chapter.
Internal	storage—Store	private	data	on	the	device	memory.
External	storage—Store	public	data	on	the	shared	external	storage.
SQLite	databases—Store	structured	data	in	a	private	database.
Network	connection—Store	data	on	the	web	with	your	own	network	server.
Cloud	Backup—Backing	up	app	and	user	data	in	the	cloud.
Content	providers—Store	data	privately	and	make	them	available	publicly.	This	will	be	covered	in	the	after-next
chapter.
Firebase	realtime	database—Store	and	sync	data	with	a	NoSQL	cloud	database.	Data	is	synced	across	all	clients	in
real	time,	and	remains	available	when	your	app	goes	offline.

Shared	preferences
Using	shared	preferences	is	a	way	to	read	and	write	key-value	pairs	of	information	persistently	to	and	from	a	file.

Note:	By	default	these	key-value	pairs	are	neither	shared	nor	preferences,	so	do	not	confuse	them	with	the	Preference
APIs.
Shared	Preferences	is	covered	in	its	">own	chapter.

Files
Android	uses	a	file	system	that's	similar	to	disk-based	file	systems	on	other	platforms	such	as	Linux.	File-based	operations
should	be	familiar	to	anyone	who	has	used	use	Linux	file	I/O	or	the	java.io	package.

All	Android	devices	have	two	file	storage	areas:	"internal"	and	"external"	storage.	These	names	come	from	the	early	days	of
Android,	when	most	devices	offered	built-in	non-volatile	memory	(internal	storage),	plus	a	removable	storage	medium	such
as	a	micro	SD	card	(external	storage).

Today,	some	devices	divide	the	permanent	storage	space	into	"internal"	and	"external"	partitions,	so	even	without	a
removable	storage	medium,	there	are	always	two	storage	spaces	and	the	API	behavior	is	the	same	whether	the	external
storage	is	removable	or	not.	The	following	lists	summarize	the	facts	about	each	storage	space.

9.0:	Storing	Data

326

https://developer.android.com/guide/topics/data/data-storage.html#pref
https://developer.android.com/guide/topics/data/data-storage.html#filesInternal
https://developer.android.com/guide/topics/data/data-storage.html#filesExternal
https://developer.android.com/guide/topics/data/data-storage.html#db
https://developer.android.com/guide/topics/data/data-storage.html#netw
https://developer.android.com/training/backup/index.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://firebase.google.com/docs/database/
https://developer.android.com/reference/android/preference/Preference.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/91_c_shared_preferences.html

Internal	storage External	storage

Always	available.

Not	always	available,	because	the
user	can	mount	the	external	storage
as	USB	storage	and	in	some	cases
remove	it	from	the	device.

Only	your	app	can	access	files.	Specifically,	your	app's	internal	storage
directory	is	specified	by	your	app's	package	name	in	a	special	location	of
the	Android	file	system.	Other	apps	cannot	browse	your	internal
directories	and	do	not	have	read	or	write	access	unless	you	explicitly	set
the	files	to	be	readable	or	writable.

World-readable.	Any	app	can	read.

When	the	user	uninstalls	your	app,	the	system	removes	all	your	app's
files	from	internal	storage.

When	the	user	uninstalls	your	app,	the
system	removes	your	app's	files	from
here	only	if	you	save	them	in	the
directory	from	getExternalFilesDir().

Internal	storage	is	best	when	you	want	to	be	sure	that	neither	the	user	nor
other	apps	can	access	your	files.

External	storage	is	the	best	place	for
files	that	don't	require	access
restrictions	and	for	files	that	you	want
to	share	with	other	apps	or	allow	the
user	to	access	with	a	computer.

Internal	storage

You	don't	need	any	permissions	to	save	files	on	the	internal	storage.	Your	application	always	has	permission	to	read	and
write	files	in	its	internal	storage	directory.

You	can	create	files	in	two	different	directories:

Permanent	storage:		getFilesDir()	
Temporary	storage:		getCacheDir()	.	Recommended	for	small,	temporary	files	totalling	less	than	1MB.	Note	that	the
system	may	delete	temporary	files	if	it	runs	low	on	memory.

To	create	a	new	file	in	one	of	these	directories,	you	can	use	the	File()	constructor,	passing	the	File	provided	by	one	of	the
above	methods	that	specifies	your	internal	storage	directory.	For	example:

File	file	=	new	File(context.getFilesDir(),	filename);

Alternatively,	you	can	call	openFileOutput()	to	get	a	FileOutputStream	that	writes	to	a	file	in	your	internal	directory.	For
example,	here's	how	to	write	some	text	to	a	file:

String	filename	=	"myfile";

String	string	=	"Hello	world!";

FileOutputStream	outputStream;

try	{

		outputStream	=	openFileOutput(filename,	Context.MODE_PRIVATE);

		outputStream.write(string.getBytes());

		outputStream.close();

}	catch	(Exception	e)	{

		e.printStackTrace();

}

Or,	if	you	need	to	cache	some	files,	instead	use	createTempFile().	For	example,	the	following	method	extracts	the	filename
from	a	URL	and	creates	a	file	with	that	name	in	your	app's	internal	cache	directory:

9.0:	Storing	Data

327

https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/content/Context.html#getFilesDir()
https://developer.android.com/reference/android/content/Context.html#getCacheDir()
https://developer.android.com/reference/java/io/File.html#File(java.io.File,%20java.lang.String)
https://developer.android.com/reference/java/io/File.html
https://developer.android.com/reference/android/content/Context.html#openFileOutput(java.lang.String,%20int)
https://developer.android.com/reference/java/io/FileOutputStream.html
https://developer.android.com/reference/java/io/File.html#createTempFile(java.lang.String,%20java.lang.String)
https://developer.android.com/reference/java/net/URL.html

public	File	getTempFile(Context	context,	String	url)	{

				File	file;

				try	{

								String	fileName	=	Uri.parse(url).getLastPathSegment();

								file	=	File.createTempFile(fileName,	null,	context.getCacheDir());

				}	catch	(IOException	e)	{

								//	Error	while	creating	file

				}

				return	file;

}

External	storage
Use	external	storage	for	files	that	should	be	permanently	stored,	even	if	your	app	is	uninstalled,	and	be	available	freely	to
other	users	and	apps,	such	as	pictures,	drawings,	or	documents	made	by	your	app.

Some	private	files	that	are	of	no	value	to	other	apps	can	also	be	stored	on	external	storage.	Such	files	might	be	additional
downloaded	app	resources,	or	temporary	media	files.	Make	sure	you	delete	those	when	your	app	is	uninstalled.

Obtain	permissions	for	external	storage

To	write	to	the	external	storage,	you	must	request	the	WRITE_EXTERNAL_STORAGE	permission	in	your	manifest	file.
This	implicitly	includes	permission	to	read.

<manifest	...>

				<uses-permission	android:name="android.permission.WRITE_EXTERNAL_STORAGE"	/>

				...

</manifest>

If	your	app	needs	to	read	the	external	storage	(but	not	write	to	it),	then	you	will	need	to	declare	the
READ_EXTERNAL_STORAGE	permission.

<manifest	...>

				<uses-permission	android:name="android.permission.READ_EXTERNAL_STORAGE"	/>

				...

</manifest>

Always	check	whether	external	storage	is	mounted
Because	the	external	storage	may	be	unavailable—such	as	when	the	user	has	mounted	the	storage	to	a	PC	or	has
removed	the	SD	card	that	provides	the	external	storage—you	should	always	verify	that	the	volume	is	available	before
accessing	it.	You	can	query	the	external	storage	state	by	calling	getExternalStorageState().	If	the	returned	state	is	equal	to
MEDIA_MOUNTED,	then	you	can	read	and	write	your	files.	For	example,	the	following	methods	are	useful	to	determine	the
storage	availability:

9.0:	Storing	Data

328

https://developer.android.com/reference/android/Manifest.permission.html#WRITE_EXTERNAL_STORAGE
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/reference/android/Manifest.permission.html#READ_EXTERNAL_STORAGE
https://developer.android.com/reference/android/os/Environment.html#getExternalStorageState()
https://developer.android.com/reference/android/os/Environment.html#MEDIA_MOUNTED

/*	Checks	if	external	storage	is	available	for	read	and	write	*/

public	boolean	isExternalStorageWritable()	{

				String	state	=	Environment.getExternalStorageState();

				if	(Environment.MEDIA_MOUNTED.equals(state))	{

								return	true;

				}

				return	false;

}

/*	Checks	if	external	storage	is	available	to	at	least	read	*/

public	boolean	isExternalStorageReadable()	{

				String	state	=	Environment.getExternalStorageState();

				if	(Environment.MEDIA_MOUNTED.equals(state)	||

								Environment.MEDIA_MOUNTED_READ_ONLY.equals(state))	{

								return	true;

				}

				return	false;

}

Public	and	private	external	storage
External	storage	is	very	specifically	structured	and	used	by	the	Android	system.	There	are	public	directories,	and	private
directories	specific	to	your	app.	Each	of	these	file	trees	has	directories	identified	by	system	constants.

For	example,	any	files	that	you	store	into	the	public	ringtone	directory	DIRECTORY_RINGTONES	are	available	to	all	other
ringtone	apps.

On	the	other	hand,	any	files	you	store	in	a	private	ringtone	directory	DIRECTORY_RINGTONES	can,	by	default,	only	be
seen	by	your	app	and	are	deleted	along	with	your	app.

See	list	of	public	directories	for	the	full	listing.

Getting	file	descriptors
To	access	a	public	external	storage	directory,	get	a	path	and	create	a	file	calling	getExternalStoragePublicDirectory().

File	path	=	Environment.getExternalStoragePublicDirectory(

												Environment.DIRECTORY_PICTURES);

File	file	=	new	File(path,	"DemoPicture.jpg");

To	access	a	private	external	storage	directory,	get	a	path	and	create	a	file	calling	getExternalFilesDir().

File	file	=	new	File(getExternalFilesDir(null),	"DemoFile.jpg");

Querying	storage	space
If	you	know	ahead	of	time	how	much	data	you're	saving,	you	can	find	out	whether	sufficient	space	is	available	without
causing	an	IOException	by	calling	getFreeSpace()	or	getTotalSpace().	These	methods	provide	the	current	available	space
and	the	total	space	in	the	storage	volume,	respectively.

You	aren't	required	to	check	the	amount	of	available	space	before	you	save	your	file.	You	can	instead	try	writing	the	file
right	away,	then	catch	an	IOException	if	one	occurs.	You	may	need	to	do	this	if	you	don't	know	exactly	how	much	space
you	need.

Deleting	files

You	should	always	delete	files	that	you	no	longer	need.	The	most	straightforward	way	to	delete	a	file	is	to	have	the	opened
file	reference	call	delete()on	itself.

9.0:	Storing	Data

329

https://developer.android.com/reference/android/os/Environment.html#DIRECTORY_RINGTONES
https://developer.android.com/reference/android/os/Environment.html#DIRECTORY_RINGTONES
https://developer.android.com/reference/android/os/Environment.html
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory(java.lang.String)
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/java/io/IOException.html
https://developer.android.com/reference/java/io/File.html#getFreeSpace()
https://developer.android.com/reference/java/io/File.html#getTotalSpace()
https://developer.android.com/reference/java/io/IOException.html
https://developer.android.com/reference/java/io/File.html#delete()

myFile.delete();

If	the	file	is	saved	on	internal	storage,	you	can	also	ask	the	Context	to	locate	and	delete	a	file	by	calling	deleteFile():

myContext.deleteFile(fileName);

As	a	good	citizen,	you	should	also	regularly	delete	cached	files	that	you	created	with	getCacheDir().

Interacting	with	files	summary
Once	you	have	the	file	descriptors,	use	standard	java.io	file	operators	or	streams	to	interact	with	the	files.	This	is	not
Android-specific	and	not	covered	here.

SQLite	database
Saving	data	to	a	database	is	ideal	for	repeating	or	structured	data,	such	as	contact	information.	Android	provides	an	SQL-
like	database	for	this	purpose.

The	following	chapters	and	practical	will	teach	you	in	depth	how	to	use	SQLite	databases	with	your	Android	apps:

SQLite	Primer
Introduction	to	SQLite	Databases
SQLite	Data	Storage	Practical
Searching	an	SQLite	Database	Practical

Other	storage	options
Android	provides	additional	storage	options	that	are	beyond	the	scope	of	this	introductory	course.	If	you'd	like	to	explore
them,	see	the	resources	below.

Network	connection
You	can	use	the	network	(when	it's	available)	to	store	and	retrieve	data	on	your	own	web-based	services.	To	do	network
operations,	use	classes	in	the	following	packages:

java.net.*
android.net.*

Backing	up	app	data
Users	often	invest	significant	time	and	effort	creating	data	and	setting	preferences	within	apps.	Preserving	that	data	for
users	if	they	replace	a	broken	device	or	upgrade	to	a	new	one	is	an	important	part	of	ensuring	a	great	user	experience.

Auto	backup	for	Android	6.0	(API	level	23)	and	higher

For	apps	whose	target	SDK	version	is	Android	6.0	(API	level	23)	and	higher,	devices	running	Android	6.0	and	higher
automatically	backup	app	data	to	the	cloud.	The	system	performs	this	automatic	backup	for	nearly	all	app	data	by	default,
and	does	so	without	your	having	to	write	any	additional	app	code.

When	a	user	installs	your	app	on	a	new	device,	or	reinstalls	your	app	on	one	(for	example,	after	a	factory	reset),	the	system
automatically	restores	the	app	data	from	the	cloud.	The	automatic	backup	feature	preserves	the	data	your	app	creates	on	a
user	device	by	uploading	it	to	the	user's	Google	Drive	account	and	encrypting	it.	There	is	no	charge	to	you	or	the	user	for

9.0:	Storing	Data

330

https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/Context.html#deleteFile(java.lang.String)
https://developer.android.com/sdk/api_diff/24/changes/pkg_java.io.html
https://developer.android.com/reference/java/net/package-summary.html
https://developer.android.com/reference/android/net/package-summary.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#target

data	storage,	and	the	saved	data	does	not	count	towards	the	user's	personal	Google	Drive	quota.	Each	app	can	store	up	to
25MB.	Once	its	backed-up	data	reaches	25MB,	the	app	no	longer	sends	data	to	the	cloud.	If	the	system	performs	a	data
restore,	it	uses	the	last	data	snapshot	that	the	app	had	sent	to	the	cloud.

Automatic	backups	occur	when	the	following	conditions	are	met:

The	device	is	idle.
The	device	is	charging.
The	device	is	connected	to	a	Wi-Fi	network.
At	least	24	hours	have	elapsed	since	the	last	backup.

You	can	customize	and	configure	auto	backup	for	your	app.	See	Configuring	Auto	Backup	for	Apps.

Backup	for	Android	5.1	(API	level	22)	and	lower

For	users	with	previous	versions	of	Android,	you	need	to	use	the	Backup	API	to	implement	data	backup.	In	summary,	this
requires	you	to:

1.	 Register	for	the	Android	Backup	Service	to	get	a	Backup	Service	Key.
2.	 Configure	your	Manifest	to	use	the	Backup	Service.
3.	 Create	a	backup	agent	by	extending	the	BackupAgentHelper	class.
4.	 Request	backups	when	data	has	changed.

More	information	and	sample	code:

Using	the	Backup	API
Data	Backup

Firebase
Firebase	is	a	mobile	platform	that	helps	you	develop	apps,	grow	your	user	base,	and	earn	more	money.	Firebase	is	made
up	of	complementary	features	that	you	can	mix-and-match	to	fit	your	needs.

Some	features	are	Analytics,	Cloud	Messaging,	Notifications,	and	the	Test	Lab.

For	data	management,	Firebase	offers	a	Realtime	Database.

Store	and	sync	data	with	a	NoSQL	cloud	database.
Connected	apps	share	data
Hosted	in	the	cloud
Data	is	stored	as	JSON
Data	is	synchronized	in	real	time	to	every	connected	client
Data	remains	available	when	your	app	goes	offline

See	the	Firebase	home	for	more	information.

Learn	more
Files

Saving	Files
getExternalFilesDir()	documentation	and	code	samples
getExternalStoragePublicDirectory()	documentation	and	code	samples
java.io.File	class
Oracle's	Java	I/O	Tutorial

Backup

9.0:	Storing	Data

331

https://developer.android.com/training/backup/autosyncapi.html
https://developer.android.com/training/backup/backupapi.html
https://developer.android.com/guide/topics/data/backup.html
https://firebase.google.com/features/
https://firebase.google.com/docs/database/
https://firebase.google.com/
https://developer.android.com/training/basics/data-storage/files.html
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory(java.lang.String)
https://developer.android.com/reference/java/io/File.html
https://docs.oracle.com/javase/tutorial/essential/io/

Configuring	Auto	Backup	for	Apps
Using	the	Backup	API
Data	Backup

Shared	Preferencss

Saving	Key-Value	Sets
Using	Shared	Preferences	Guide
Shared	Preferences	reference

Firebase

Firebase	home
Firebase	Realtime	Database
Add	Firebase	to	Your	Android	Project

9.0:	Storing	Data

332

https://developer.android.com/training/backup/autosyncapi.html
https://developer.android.com/training/backup/backupapi.html
https://developer.android.com/guide/topics/data/backup.html
https://developer.android.com/training/basics/data-storage/shared-preferences.html
https://developer.android.com/guide/topics/data/data-storage.html#pref
https://developer.android.com/reference/android/content/SharedPreferences.html
https://firebase.google.com/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/android/setup

9.1:	Shared	Preferences
Contents:

Shared	preferences	vs.	saved	instance	state
Creating	a	shared	preferences	file
Saving	shared	preferences
Restoring	shared	preferences
Clearing	shared	preferences
Listening	for	preference	changes
Related	practical
Learn	more

Shared	preferences	allow	you	to	read	and	write	small	amounts	of	primitive	data	as	key/value	pairs	to	a	file	on	the	device
storage.	The	SharedPreference	class	provides	APIs	for	getting	a	handle	to	a	preference	file	and	for	reading,	writing,	and
managing	this	data.	The	shared	preferences	file	itself	is	managed	by	the	framework	and	accessible	to	(shared	with)	all	the
components	of	your	app.	That	data	is	not	shared	with	or	accessible	to	any	other	apps.

For	managing	large	amounts	of	data,	use	a	SQLite	database	or	other	suitable	storage	option,	which	will	be	discussed	in	a
later	chapter.

Shared	preferences	vs.	saved	instance	state
In	a	previous	chapter	you	learned	about	preserving	state	using	saved	instance	states.	Here	is	a	comparison	between	the
two.

Shared	Preferences Saved	instance	state

Persists	across	user	sessions,	even	if	your	app	is
killed	and	restarted,	or	the	device	is	rebooted.

Preserves	state	data	across	activity	instances	in	the	same
user	session.

Data	that	should	be	remembered	across	sessions,
such	as	a	user's	preferred	settings	or	their	game
score.

Data	that	should	not	be	remembered	across	sessions,	such
as	the	currently	selected	tab,	or	any	current	state	of	an
activity.

Small	number	of	key/value	pairs. Small	number	of	key/value	pairs.

Data	is	private	to	the	application. Data	is	private	to	the	application.

Common	use	is	to	store	user	preferences. Common	use	is	to	recreate	state	after	the	device	has	been
rotated.

Note:	The	SharedPreference	APIs	are	also	different	from	the	Preference	APIs.	The	Preference	APIs	can	be	used	to	build
user	interface	for	a	settings	page,	and	they	do	use	shared	preferences	for	their	underlying	implementation.	See	Settings	for
more	information	on	settings	and	the	Preference	APIs.

Creating	a	shared	preferences	file
You	need	only	one	shared	preferences	file	for	your	app,	and	it	is	customarily	named	with	the	package	name	of	your	app.
This	makes	its	name	unique	and	easily	associated	with	your	app.

You	create	the	shared	preferences	file	in	the	onCreate()	method	of	your	main	activity	and	store	it	in	a	member	variable.

9.1:	Shared	Preferences

333

https://developer.android.com/guide/topics/ui/settings.html

private	String	sharedPrefFile	=	"com.example.android.hellosharedprefs";

mPreferences	=	getSharedPreferences(sharedPrefFile,	MODE_PRIVATE);

The	mode	argument	is	required,	because	older	versions	of	Android	had	other	modes	that	allowed	you	to	create	a	world-
readable	or	world-writable	shared	preferences	file.	These	modes	were	deprecated	in	API	17,	and	are	now	strongly
discouraged	for	security	reasons.	If	you	need	to	share	data	with	other	apps,	use	a	service	or	a	content	provider.

Saving	shared	preferences
You	save	preferences	in	the	onPause()	state	of	the	activity	lifecycle	using	tge	SharedPreferences.Editor	interface.

1.	 Get	a	SharedPreferences.Editor.	The	editor	takes	care	of	all	the	file	operations	for	you.	When	two	editors	are
modifying	preferences	at	the	same	time,	the	last	one	to	call	apply	wins.

2.	 Add	key/value	pairs	to	the	editor	using	the	put	method	appropriate	for	the	data	type.	The	put	methods	will	overwrite
previously	existing	values	of	an	existing	key.

3.	 Call	apply()	to	write	out	your	changes.	The	apply()	method	saves	the	preferences	asynchronously,	off	of	the	UI	thread.
The	shared	preferences	editor	also	has	a	commit()	method	to	synchronously	save	the	preferences.	The	commit()
method	is	discouraged	as	it	can	block	other	operations.	As	SharedPreferences	instances	are	singletons	within	a
process,	it's	safe	to	replace	any	instance	of	commit()	with	apply()	if	you	were	already	ignoring	the	return	value.

You	don't	need	to	worry	about	Android	component	lifecycles	and	their	interaction	with	apply()	writing	to	disk.	The
framework	makes	sure	in-flight	disk	writes	from	apply()	complete	before	switching	states.

@Override

protected	void	onPause()	{

			super.onPause();

			SharedPreferences.Editor	preferencesEditor	=	mPreferences.edit();

			preferencesEditor.putInt("count",	mCount);

			preferencesEditor.putInt("color",	mCurrentColor);

			preferencesEditor.apply();

}

Restoring	shared	preferences
You	restore	shared	preferences	in	the	onCreate()	method	of	your	activity.	The	get()	methods	take	two	arguments—one	for
the	key	and	one	for	the	default	value	if	the	key	cannot	be	found.	Using	the	default	argument,	you	don't	have	to	test	whether
the	preference	exists	in	the	file.

mPreferences	=	getSharedPreferences(sharedPrefFile,	MODE_PRIVATE);

if	(savedInstanceState	!=	null)	{

				mCount	=	mPreferences.getInt("count",	1);

				mShowCount.setText(String.format("%s",	mCount));

				mCurrentColor	=	mPreferences.getInt("color",	mCurrentColor);

				mShowCount.setBackgroundColor(mCurrentColor);

}	else	{	…	}

Clearing	shared	preferences
To	clear	all	the	values	in	the	shared	preferences	file,	call	the	clear()	method	on	the	shared	preferences	editor	and	apply	the
changes.

9.1:	Shared	Preferences

334

https://developer.android.com/reference/android/content/SharedPreferences.Editor.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html#commit()
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html#apply()

SharedPreferences.Editor	preferencesEditor	=	mPreferences.edit();

preferencesEditor.putInt("number",	42);

preferencesEditor.clear();

preferencesEditor.apply();

You	can	combine	calls	to	put	and	clear.	However,	when	applying	the	preferences,	the	clear	is	always	done	first,	regardless
of	whether	you	called	clear	before	or	after	the	put	methods	on	this	editor.

Listening	for	preference	changes
There	are	several	reasons	you	might	want	to	be	notified	as	soon	as	the	user	changes	one	of	the	preferences.	In	order	to
receive	a	callback	when	a	change	happens	to	any	one	of	the	preferences,	implement	the
SharedPreference.OnSharedPreferenceChangeListener	interface	and	register	the	listener	for	the	SharedPreferences
object	by	calling	registerOnSharedPreferenceChangeListener().

The	interface	has	only	one	callback	method,	onSharedPreferenceChanged(),	and	you	can	implement	the	interface	as	a
part	of	your	activity.

public	class	SettingsActivity	extends	PreferenceActivity

																														implements	OnSharedPreferenceChangeListener	{

				public	static	final	String	KEY_PREF_SYNC_CONN	=	"pref_syncConnectionType";

				...

				public	void	onSharedPreferenceChanged(SharedPreferences	sharedPreferences,

								String	key)	{

								if	(key.equals(KEY_PREF_SYNC_CONN))	{

												Preference	connectionPref	=	findPreference(key);

												//	Set	summary	to	be	the	user-description	for	the	selected	value

												connectionPref.setSummary(sharedPreferences.getString(key,	""));

								}

				}

}

In	this	example,	the	method	checks	whether	the	changed	setting	is	for	a	known	preference	key.	It	calls	findPreference()	to
get	the	Preference	object	that	was	changed	so	it	can	modify	the	item's	summary	to	be	a	description	of	the	user's	selection.

For	proper	lifecycle	management	in	the	activity,	register	and	unregister	your
SharedPreferences.OnSharedPreferenceChangeListener	during	the	onResume()	and	onPause()	callbacks,	respectively:

@Override

protected	void	onResume()	{

				super.onResume();

				getPreferenceScreen().getSharedPreferences()

												.registerOnSharedPreferenceChangeListener(this);

}

@Override

protected	void	onPause()	{

				super.onPause();

				getPreferenceScreen().getSharedPreferences()

												.unregisterOnSharedPreferenceChangeListener(this);

}

Hold	a	reference	to	the	listener
When	you	call	registerOnSharedPreferenceChangeListener(),	the	preference	manager	does	not	currently	store	a	reference
to	the	listener.	You	must	hold	onto	a	reference	to	the	listener,	or	it	will	be	susceptible	to	garbage	collection.	Keep	a
reference	to	the	listener	in	the	instance	data	of	an	object	that	will	exist	as	long	as	you	need	the	listener.

9.1:	Shared	Preferences

335

https://developer.android.com/reference/android/content/SharedPreferences.OnSharedPreferenceChangeListener.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html#registerOnSharedPreferenceChangeListener(android.content.SharedPreferences.OnSharedPreferenceChangeListener)
https://developer.android.com/reference/android/content/SharedPreferences.OnSharedPreferenceChangeListener.html#onSharedPreferenceChanged(android.content.SharedPreferences,%20java.lang.String)
https://developer.android.com/reference/android/preference/PreferenceActivity.html#findPreference(java.lang.CharSequence)
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/content/SharedPreferences.OnSharedPreferenceChangeListener.html
https://developer.android.com/reference/android/app/Activity.html#onResume()
https://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.android.com/reference/android/content/SharedPreferences.html#registerOnSharedPreferenceChangeListener(android.content.SharedPreferences.OnSharedPreferenceChangeListener)

SharedPreferences.OnSharedPreferenceChangeListener	listener	=

				new	SharedPreferences.OnSharedPreferenceChangeListener()	{

		public	void	onSharedPreferenceChanged(SharedPreferences	prefs,	String	key)	{

				//	listener	implementation

		}

};

prefs.registerOnSharedPreferenceChangeListener(listener);

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Shared	Preferences

Learn	more
Saving	Data
Storage	Options
Saving	Key-Value	Sets
SharedPreferences
SharedPreferences.Editor

Stackoverflow

How	to	use	SharedPreferences	in	Android	to	store,	fetch	and	edit	values
onSavedInstanceState	vs.	SharedPreferences

9.1:	Shared	Preferences

336

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/91_p_shared_preferences.html
https://developer.android.com/training/basics/data-storage/index.html
https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/training/basics/data-storage/shared-preferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html
http://stackoverflow.com/questions/3624280/how-to-use-sharedpreferences-in-android-to-store-fetch-and-edit-values
http://stackoverflow.com/questions/5901482/onsavedinstancestate-vs-sharedpreferences

9.2:	App	Settings
Contents:

Determining	appropriate	setting	controls
Providing	navigation	to	Settings
The	Settings	UI
Displaying	the	settings
Setting	the	default	values	for	settings
Reading	the	settings	values
Listening	for	a	setting	change
Using	the	Settings	Activity	template
Related	practical
Learn	more

This	chapter	describes	app	settings	that	let	users	indicate	their	preferences	for	how	an	app	or	service	should	behave.

Determining	appropriate	setting	controls
Apps	often	include	settings	that	allow	users	to	modify	app	features	and	behaviors.	For	example,	some	apps	allow	users	to
specify	whether	notifications	are	enabled,	or	how	often	the	application	syncs	data	with	the	cloud.

The	controls	that	belong	in	the	app's	settings	should	capture	user	preferences	that	affect	most	users	or	provide	critical
support	to	a	minority	of	users.	For	example,	notification	settings	affect	all	users,	while	a	currency	setting	for	a	foreign
market	provides	critical	support	for	the	users	in	that	market.

Settings	are	usually	accessed	infrequently,	because	once	users	change	a	setting,	they	rarely	need	to	go	back	and	change
it	again.	If	the	control	or	preference	you	are	providing	the	user	is	something	that	needs	to	be	frequently	accessed,	consider
moving	it	to	the	app	bar's	options	menu,	or	to	a	side	navigation	menu	such	as	a	navigation	drawer.

Set	defaults	for	your	setting	controls	that	are	familiar	to	users	and	make	the	app	experience	better.	The	initial	default	value
for	a	setting	should:

Represent	the	value	most	users	would	choose,	such	as	All	contacts	for	"Contacts	to	display"	in	the	Contacts	app.
Use	less	battery	power.	For	example,	in	the	Android	Settings	app,	Bluetooth	is	set	to	off	until	the	user	turns	it	on.
Pose	the	least	risk	to	security	and	data	loss.	For	example,	the	default	setting	for	the	Gmail	app's	default	action	is	to
archive	rather	than	delete	messages.
Interrupt	only	when	important.	For	example,	the	default	setting	for	when	calls	and	notifications	arrive	is	to	interrupt	only
when	important.

Tip:	If	the	setting	contains	information	about	the	app,	such	as	a	version	number	or	licensing	information,	move	these	to	a
separately-accessed	Help	screen.

Providing	navigation	to	Settings
Users	should	be	able	to	navigate	to	app	settings	by	tapping	Settings,	which	should	be	located	in	side	navigation,	such	as	a
navigation	drawer,	as	shown	on	the	left	side	of	the	figure	below,	or	in	the	options	menu	in	the	app	bar,	as	shown	on	the
right	side	of	the	figure	below.	

9.2:	App	Settings

337

In	the	figure	above:

1.	 Settings	in	side	navigation	(a	navigation	drawer)
2.	 Settings	in	the	options	menu	of	the	app	bar

Follow	these	design	guidelines	for	navigating	to	settings:

If	your	app	offers	side	navigation	such	as	a	navigation	drawer,	include	Settings	below	all	other	items	(except	Help	and
Send	Feedback).
If	your	app	doesn't	offer	side	navigation,	place	Settings	in	the	app	bar	menu's	options	menu	below	all	other	items
(except	Help	and	Send	Feedback).
Note:	Use	the	word	Settings	in	the	app's	navigation	to	access	the	settings.	Do	not	use	synonyms	such	as	"Options"	or
"Preferences."

Tip:	Android	Studio	provides	a	shortcut	for	setting	up	an	options	menu	with	Settings.	If	you	start	an	Android	Studio	project
for	a	smartphone	or	tablet	using	the	Basic	Activity	template,	the	new	app	includes	Settings	as	shown	below:

9.2:	App	Settings

338

9.2:	App	Settings

339

The	Settings	UI
Settings	should	be	well-organized,	predictable,	and	contain	a	manageable	number	of	options.	A	user	should	be	able	to
quickly	understand	all	available	settings	and	their	current	values.	Follow	these	design	guidelines:

7	or	fewer	settings:	Arrange	them	according	to	priority	with	the	most	important	ones	at	the	top.
7-15	settings:	Group	related	settings	under	section	dividers.	For	example,	in	the	figure	below,	"Priority	interruptions"
and	"Downtime	(priority	interruptions	only)"	are	section	dividers.

9.2:	App	Settings

340

9.2:	App	Settings

341

16	or	more	settings:	Group	related	settings	into	separate	sub-screens.	Use	headings,	such	as	Display	on	the	main
Settings	screen	(as	shown	on	the	left	side	of	the	figure	below)	to	enable	users	to	navigate	to	the	display	settings
(shown	on	the	right	side	of	the	figure	below):	

Building	the	settings

Build	an	app's	settings	using	various	subclasses	of	the	Preference	class	rather	than	using	View	objects.	This	class	provides
the	View	to	be	displayed	for	each	setting,	and	associates	with	it	a	SharedPreferences	interface	to	store/retrieve	the
preference	data.

Each	Preference	appears	as	an	item	in	a	list.	Direct	subclasses	provide	containers	for	layouts	involving	multiple	settings.
For	example:

PreferenceGroup:	Represents	a	group	of	settings	(Preference	objects).
PreferenceCategory:	Provides	a	disabled	title	above	a	group	as	a	section	divider.
PreferenceScreen:	Represents	a	top-level	Preference	that	is	the	root	of	a	Preference	hierarchy.	Use	a
PreferenceScreen	in	a	layout	at	the	top	of	each	screen	of	settings.

For	example,	to	provide	dividers	with	headings	between	groups	of	settings	(as	shown	in	the	previous	figure	for	7-15
settings),	place	each	group	of	Preference	objects	inside	a	PreferenceCategory.	To	use	separate	screens	for	groups,	place
each	group	of	Preference	objects	inside	a	PreferenceScreen.

Other	Preference	subclasses	for	settings	provide	the	appropriate	UI	for	users	to	change	the	setting.	For	example:

CheckBoxPreference:	Creates	a	list	item	that	shows	a	checkbox	for	a	setting	that	is	either	enabled	or	disabled.	The
saved	value	is	a	boolean	(true		if	it's	checked).
ListPreference:	Creates	an	item	that	opens	a	dialog	with	a	list	of	radio	buttons.
SwitchPreference:	Creates	a	two-state	toggleable	option	(such	as	on/off	or	true/false).

9.2:	App	Settings

342

https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/preference/PreferenceGroup.html
https://developer.android.com/reference/android/preference/PreferenceCategory.html
https://developer.android.com/reference/android/preference/PreferenceScreen.html
https://developer.android.com/reference/android/preference/CheckBoxPreference.html
https://developer.android.com/reference/android/preference/ListPreference.html
https://developer.android.com/reference/android/preference/SwitchPreference.html

EditTextPreference:	Creates	an	item	that	opens	a	dialog	with	an	EditText	widget.	The	saved	value	is	a	String.
RingtonePreference:	Lets	the	user	to	choose	a	ringtone	from	those	available	on	the	device.

Define	your	list	of	settings	in	XML,	which	provides	an	easy-to-read	structure	that's	simple	to	update.	Each	Preference
subclass	can	be	declared	with	an	XML	element	that	matches	the	class	name,	such	as		<CheckBoxPreference>	.

XML	attributes	for	settings

The	following	example	from	the	Settings	Activity	template	defines	a	screen	with	three	settings	as	shown	in	the	figure	below:
a	toggle	switch	(at	the	top	of	the	screen	on	the	left	side),	a	text	entry	field	(center),	and	a	list	of	radio	buttons	(right):	

The	root	of	the	settings	hierarchy	is	a		PreferenceScreen		layout:

<PreferenceScreen	xmlns:android="http://schemas.android.com/apk/res/android">

.	.	.

</PreferenceScreen>

Inside	this	layout	are	three	settings:

	SwitchPreference	:	Show	a	toggle	switch	to	disable	or	enable	an	option.	

The	setting	has	the	following	attributes:

	android:defaultValue	:	The	option	is	enabled	(set	to		true)	by	default.
	android:summary	:	The	text	summary	appears	underneath	the	setting.	For	some	settings,	the	summary	should
change	to	show	whether	the	option	is	enabled	or	disabled.
	android:title	:	The	title	of	the	setting.	For	a		SwitchPreference	,	the	title	appears	to	the	left	of	the	toggle	switch.
android:key:	The	key	to	use	for	storing	the	setting	value.	Each	setting	(Preference	object)	has	a	corresponding
key-value	pair	that	the	system	uses	to	save	the	setting	in	a	default	SharedPreferences	file	for	your	app's	settings.

9.2:	App	Settings

343

https://developer.android.com/reference/android/preference/EditTextPreference.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/android/preference/RingtonePreference.html
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/content/SharedPreferences.html

<SwitchPreference

					android:defaultValue="true"

					android:key="example_switch"

					android:summary="@string/pref_description_social_recommendations"

					android:title="@string/pref_title_social_recommendations"	/>

	EditTextPreference	:	Show	a	text	field	for	the	user	to	enter	text.	

Use	EditText	attributes	such	as		android:capitalize		and		android:maxLines		to	define	the	text	field's	appearance
and	input	control.
The	default	setting	is	the		pref_default_display_name		string	resource.

		<EditTextPreference

					android:capitalize="words"

					android:defaultValue="@string/pref_default_display_name"

					android:inputType="textCapWords"

					android:key="example_text"

					android:maxLines="1"

					android:selectAllOnFocus="true"

					android:singleLine="true"

					android:title="@string/pref_title_display_name"	/>

	ListPreference	:	Show	a	dialog	with	radio	buttons	for	the	user	to	make	one	choice.	

The	default	value	is	set	to		-1		for	no	choice.
The	text	for	the	radio	buttons	(Always,	When	possible,	and	Never)	are	defined	in	the		pref_example_list_titles	
array	and	specified	by	the		android:entries		attribute.
The	values	for	the	radio	button	choices	are	defined	in	the		pref_example_list_values		array	and	specified	by	the
	android:entryValues		attribute.
The	radio	buttons	are	displayed	in	a	dialog,	which	usually	have	positive	(OK	or	Accept)	and	negative	(Cancel)
buttons.	However,	a	settings	dialog	doesn't	need	these	buttons,	because	the	user	can	touch	outside	the	dialog	to
dismiss	it.	To	hide	these	buttons,	set	the		android:positiveButtonText		and		android:negativeButtonText		attributes
to		"@null"	.

9.2:	App	Settings

344

		<ListPreference

					android:defaultValue="-1"

					android:entries="@array/pref_example_list_titles"

					android:entryValues="@array/pref_example_list_values"

					android:key="example_list"

					android:negativeButtonText="@null"

					android:positiveButtonText="@null"

					android:title="@string/pref_title_add_friends_to_messages"	/>

Save	the	XML	file	in	the	res/xml/	directory.	Although	you	can	name	the	file	anything	you	want,	it's	traditionally	named
preferences.xml.

If	you	are	using	the	support	v7	appcompat	library	and	extending	the	Settings	Activity	with	AppCompatActivity	and	the
fragment	with	PreferenceFragmentCompat,	as	shown	in	the	next	section,	change	the	setting's	XML	attribute	to	use	the
support	v7	appcompat	library	version.	For	example,	for	a	SwitchPreference	setting,	change		<SwitchPreference		in	the	code
to:

<PreferenceScreen	xmlns:android="http://schemas.android.com/apk/res/android">

			<android.support.v7.preference.SwitchPreferenceCompat

			...	/>

</PreferenceScreen>

Displaying	the	settings
Use	a	specialized	Activity	or	Fragment	subclass	to	display	a	list	of	settings.

For	an	app	that	supports	Android	3.0	and	newer	versions,	the	best	practice	for	settings	is	to	use	a	Settings	Activity	and
a	fragment	for	each	preference	XML	file:

Add	a	Settings	Activity	class	that	extends	Activity	and	hosts	a	fragment	that	extends	PreferenceFragment.
To	remain	compatible	with	the	v7	appcompat	library,	extend	the	Settings	Activity	with	AppCompatActivity,	extend
the	fragment	with	PreferenceFragmentCompat.

If	your	app	must	support	versions	of	Android	older	than	3.0	(API	level	10	and	lower),	build	a	special	settings	activity	as
an	extension	of	the	PreferenceActivity	class.

Fragments	like	PreferenceFragment	provide	a	more	flexible	architecture	for	your	app,	compared	to	using	activities	alone.	A
fragment	is	like	a	modular	section	of	an	activity—it	has	its	own	lifecycle	and	receives	its	own	input	events,	and	you	can	add
or	remove	a	fragment	while	the	activity	is	running.	Use	PreferenceFragment	to	control	the	display	of	your	settings	instead
of	PreferenceActivity	whenever	possible.

However,	to	create	a	two-pane	layout	for	large	screens	when	you	have	multiple	groups	of	settings,	you	can	use	an	activity
that	extends	PreferenceActivity	and	also	use	PreferenceFragment	to	display	each	list	of	settings.	You	will	see	this	pattern
with	the	Settings	Activity	template	as	described	later	in	this	chapter	in	"Using	the	Settings	Activity	template".

The	following	examples	show	you	how	to	remain	compatible	with	the	v7	appcompat	library	by	extending	the	Settings
Activity	with	AppCompatActivity,	and	extending	the	fragment	with	PreferenceFragmentCompat.	To	use	this	library	and	the
	PreferenceFragmentCompat		version	of	PreferenceFragment,	you	must	also	add	the	android.support:preference-v7	library	to
the	build.gradle	(Module:	app)	file's		dependencies		section:

dependencies	{

			...

			compile	'com.android.support:preference-v7:25.0.1'

}

You	also	need	to	add	the	following		preferenceTheme		declaration	to	the		AppTheme		in	the	styles.xml	file:

9.2:	App	Settings

345

https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/preference/PreferenceFragment.html
https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html
https://developer.android.com/reference/android/preference/PreferenceActivity.html
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html

<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

			...

			<item	name="preferenceTheme">@style/PreferenceThemeOverlay</item>

</style>

Using	a	PreferenceFragment
The	following	shows	how	to	use	a	PreferenceFragment	to	display	a	list	of	settings,	and	how	to	add	a	PreferenceFragment
to	an	activity	for	settings.	To	remain	compatible	with	the	v7	appcompat	library,	extend	the	Settings	Activity	with
AppCompatActivity,	and	extend	the	fragment	with	PreferenceFragmentCompat	for	each	preferences	XML	file.

Replace	the	automatically	generated		onCreate()		method	with	the	onCreatePreferences()	method	to	load	a	preferences	file
with		setPreferencesFromResource()	:

public	static	class	SettingsFragment	extends	PreferenceFragment	{

				@Override

				public	void	onCreatePreferences(Bundle	savedInstanceState,

																																																String	rootKey)	{

								setPreferencesFromResource(R.xml.preferences,	rootKey);

				}

}

As	shown	in	the	code	above,	you	associate	an	XML	layout	of	settings	with	the	fragment	during	the		onCreatePreferences()	
callback	by	calling	setPreferencesFromResource()	with	two	arguments:

	R.xml.		and	the	name	of	the	XML	file	(preferences).
the		rootKey		to	identify	the	preference	root	in		PreferenceScreen	.

setPreferencesFromResource(R.xml.preferences,	rootKey);

You	can	then	create	an	Activity	for	settings	(named		SettingsActivity)	that	extends	AppCompatActivity,	and	add	the
settings	fragment	to	it:

public	class	SettingsActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								//	Display	the	fragment	as	the	main	content.

								getSupportFragmentManager().beginTransaction()

																.replace(android.R.id.content,	new	SettingsFragment())

																.commit();

								...

				}

}

The	above	code	is	the	typical	pattern	used	to	add	a	fragment	to	an	activity	so	that	the	fragment	appears	as	the	main
content	of	the	activity.	You	use:

	getFragmentManager()		if	the	class	extends		Activity		and	the	fragment	extends		PreferenceFragment	.
	getSupportFragmentManager()		if	the	class	extends		AppCompatActivity		and	the	fragment	extends
	PreferenceFragmentCompat	.

For	more	information	about	fragments,	see	Fragment.

To	set	Up	navigation	for	the	settings	activity,	be	sure	to	declare	the	Settings	Activity's	parent	to	be	MainActivity	in	the
AndroidManifest.xml	file.

Calling	the	settings	activity

9.2:	App	Settings

346

https://developer.android.com/reference/android/preference/PreferenceFragment.html
https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html#onCreatePreferences(android.os.Bundle,%20java.lang.String)
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html#setPreferencesFromResource(int,%20java.lang.String)
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/app/Fragment.html

If	you	implement	the	options	menu	with	the	Settings	item,	use	the	following	intent	to	call	the	Settings	activity	from	with	the
	onOptionsItemSelected()		method	when	the	user	taps	Settings	(using		action_settings		for	the	Settings	menu	resource
id):

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

			int	id	=	item.getItemId();

			//	...	Handle	other	options	menu	items

			if	(id	==	R.id.action_settings)	{

						Intent	intent	=	new	Intent(this,	SettingsActivity.class);

						startActivity(intent);

						return	true;

						}

			return	super.onOptionsItemSelected(item);

}

If	you	implement	a	navigation	drawer	with	the	Settings	item,	use	the	following	intent	to	call	the	Settings	activity	from	with
the		onNavigationItemSelected()		method	when	the	user	taps	Settings	(using		action_settings		for	the	Settings	menu
resource	id):

@Override

public	boolean	onNavigationItemSelected(MenuItem	item)	{

			int	id	=	item.getItemId();

			if	(id	==	R.id.action_settings)	{

						Intent	intent	=	new	Intent(this,	SettingsActivity.class);

						startActivity(intent);

			}	else	if	...

			//	...	Handle	other	navigation	drawer	items

			return	true;

}

Setting	the	default	values	for	settings
When	the	user	changes	a	setting,	the	system	saves	the	changes	to	a	SharedPreferences	file.	As	you	learned	in	another
lesson,	shared	preferences	allow	you	to	read	and	write	small	amounts	of	primitive	data	as	key/value	pairs	to	a	file	on	the
device	storage.

The	app	must	initialize	the	SharedPreferences	file	with	default	values	for	each	setting	when	the	user	first	opens	the	app.
Follow	these	steps:

1.	 Be	sure	to	specify	a	default	value	for	each	setting	in	your	XML	file	using	the		android:defaultValue		attribute:

...

<SwitchPreference

									android:defaultValue="true"

									...	/>

...

2.	 From	the	onCreate()	method	in	the	app's	main	activity—and	in	any	other	activity	through	which	the	user	may	enter
your	app	for	the	first	time—call	setDefaultValues():

...

		PreferenceManager.setDefaultValues(this,

																														R.xml.preferences,	false);

...

Step	2	ensures	that	the	app	is	properly	initialized	with	default	settings.	The		setDefaultValues()		method	takes	three
arguments:

The	app	context,	such	as		this	.
The	resource	ID	(preferences)	for	the	settings	layout	XML	file	which	includes	the	default	values	set	by	Step	1	above.

9.2:	App	Settings

347

https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/preference/PreferenceManager.html#setDefaultValues(android.content.Context,%20int,%20boolean)
https://developer.android.com/reference/android/content/Context.html

A	boolean	indicating	whether	the	default	values	should	be	set	more	than	once.	When		false	,	the	system	sets	the
default	values	only	if	this	method	has	never	been	called	in	the	past	(or	the	KEY_HAS_SET_DEFAULT_VALUES	in	the
default	value	SharedPreferences	file	is	false).	As	long	as	you	set	this	third	argument	to		false	,	you	can	safely	call	this
method	every	time	your	activity	starts	without	overriding	the	user's	saved	settings	values	by	resetting	them	to	the
default	values.	However,	if	you	set	it	to		true	,	the	method	will	override	any	previous	values	with	the	defaults.

Reading	the	settings	values
Each	Preference	you	add	has	a	corresponding	key-value	pair	that	the	system	uses	to	save	the	setting	in	a	default
SharedPreferences	file	for	your	app's	settings.	When	the	user	changes	a	setting,	the	system	updates	the	corresponding
value	in	the	SharedPreferences	file	for	you.	The	only	time	you	should	directly	interact	with	the	associated
SharedPreferences	file	is	when	you	need	to	read	the	value	in	order	to	determine	your	app's	behavior	based	on	the	user's
setting.

All	of	an	app's	preferences	are	saved	by	default	to	a	file	that	is	accessible	from	anywhere	within	the	app	by	calling	the	static
method	PreferenceManager.getDefaultSharedPreferences().	This	method	takes	the	context	and	returns	the
SharedPreferences	object	containing	all	the	key-value	pairs	that	are	associated	with	the	Preference	objects.

For	example,	the	following	code	snippet	shows	how	you	can	read	one	of	the	preference	values	from	the	main	activity's
	onCreate()		method:

...

SharedPreferences	sharedPref	=

				PreferenceManager.getDefaultSharedPreferences(this);

Boolean	switchPref	=	sharedPref

				.getBoolean("example_switch",	false);

...

The	above	code	snippet	uses		PreferenceManager.getDefaultSharedPreferences(this)		to	get	the	settings	as	a
SharedPreferences	object	(sharedPref).

It	then	uses		getBoolean()		to	get	the	boolean	value	of	the	preference	that	uses	the	key		"example_switch"	.	If	there	is	no
value	for	the	key,	the		getBoolean()		method	sets	the	value	to		false	.

Listening	for	a	setting	change
There	are	several	reasons	why	you	might	want	to	set	up	a	listener	for	a	specific	setting:

If	a	change	to	the	value	of	a	setting	also	requires	changing	the	summary	of	the	setting,	you	can	listen	for	the	change,
and	then	change	the	summary	with	the	new	setting	value.
If	the	setting	requires	several	more	options,	you	may	want	to	listen	for	the	change	and	immediately	respond	by
displaying	the	options.
If	the	setting	makes	another	setting	obsolete	or	inappropriate,	you	may	want	to	listen	for	the	change	and	immediately
respond	by	disabling	the	other	setting.

To	listen	to	a	setting,	use	the	Preference.OnPreferenceChangeListener	interface,	which	includes	the
onPreferenceChange()	method	that	returns	the	new	value	of	the	setting.

In	the	following	example,	the	listener	retrieves	the	new	value	after	the	setting	is	changed,	and	changes	the	summary	of	the
setting	(which	appears	below	the	setting	in	the	UI)	to	show	the	new	value.	Follow	these	steps:

1.	 Use	a	shared	preferences	file,	as	described	in	a	previous	chapter,	to	store	the	value	of	the	preference	(setting).
Declare	the	following	variables	in	the	SettingsFragment	class	definition:

9.2:	App	Settings

348

https://developer.android.com/reference/android/preference/PreferenceManager.html#KEY_HAS_SET_DEFAULT_VALUES
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/preference/PreferenceManager.html#getDefaultSharedPreferences(android.content.Context)
https://developer.android.com/reference/android/preference/Preference.OnPreferenceChangeListener.html
https://developer.android.com/reference/android/preference/Preference.OnPreferenceChangeListener.html#onPreferenceChange(android.preference.Preference,%20java.lang.Object)

public	class	SettingsFragment	extends	PreferenceFragment	{

			private	SharedPreferences	mPreferences;

			private	String	sharedPrefFile	=	"com.example.android.settingstest";

			...

}

2.	 Add	the	following	to	the		onCreate()		method	of	SettingsFragment	to	get	the	preference	defined	by	the	key
	example_switch	,	and	to	set	the	initial	text	(the	string	resource		option_on)	for	the	summary:

@Override

public	void	onCreate(Bundle	savedInstanceState)	{

			...

			mPreferences	=

												this.getActivity()

												.getSharedPreferences(sharedPrefFile,	MODE_PRIVATE);

			Preference	preference	=	this.findPreference("example_switch");

			preference.setSummary(mPreferences.getString("summary",

																																	getString(R.string.option_on)));

			...

}

3.	 Add	the	following	code	to		onCreate()		after	the	code	in	the	previous	step:

...

preference.setOnPreferenceChangeListener(new

																											Preference.OnPreferenceChangeListener()	{

			@Override

			public	boolean	onPreferenceChange(Preference	preference,

																											Object	newValue)	{

						if	((Boolean)	newValue	==	true)	{

									preference.setSummary(R.string.option_on);

									SharedPreferences.Editor	preferencesEditor	=

																																										mPreferences.edit();

									preferencesEditor.putString("summary",

																											getString(R.string.option_on)).apply();

						}	else	{

									preference.setSummary(R.string.option_off);

									SharedPreferences.Editor	preferencesEditor	=

																																										mPreferences.edit();

									preferencesEditor.putString("summary",

																											getString(R.string.option_off)).apply();

						}

						return	true;

			}

});

...

The	code	does	the	following:

i.	 Listens	to	a	change	in	the	switch	setting	using	onPreferenceChange(),	and	returns		true	:

@Override

public	boolean	onPreferenceChange(Preference	preference,

																			Object	newValue)	{

	...

	return	true;

}

ii.	 Determines	the	new	boolean	value	(newValue)	for	the	setting	after	the	change	(true		or		false):

if	((Boolean)	newValue	==	true)	{

	...

}	else	{

	...

}

9.2:	App	Settings

349

https://developer.android.com/reference/android/preference/Preference.OnPreferenceChangeListener.html#onPreferenceChange(android.preference.Preference,%20java.lang.Object)

iii.	 Edits	the	Shared	Preferences	file	(as	described	in	a	previous	practical)	using	SharedPreferences.Editor:

...

preference.setSummary(R.string.option_on);

SharedPreferences.Editor	preferencesEditor	=

																																		mPreferences.edit();

...

iv.	 Puts	the	new	value	as	a	string	in	the	summary	using	putString()	and	applies	the	change	using	apply():

...

preferencesEditor.putString("summary",

																			getString(R.string.option_on)).apply();

...

Using	the	Settings	Activity	template
If	you	need	to	build	several	sub-screens	of	settings	and	you	want	to	take	advantage	of	tablet-sized	screens	as	well	as
maintain	compatibility	with	older	versions	of	Android	for	tablets,	Android	Studio	provides	a	shortcut:	the	Settings	Activity
template.

The	Settings	Activity	template	is	pre-populated	with	settings	you	can	customize	for	an	app,	and	provides	a	different	layout
for	smartphones	and	tablets:

Smartphones:	A	main	Settings	screen	with	a	header	link	for	each	group	of	settings,	such	as	General	for	general
settings,	as	shown	below.

9.2:	App	Settings

350

https://developer.android.com/reference/android/content/SharedPreferences.Editor.html
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html#putString(java.lang.String,%20java.lang.String)
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html#apply()

Tablets:	A	master/detail	screen	layout	with	a	header	link	for	each	group	on	the	left	(master)	side,	and	the	group	of
settings	on	the	right	(detail)	side,	as	shown	in	the	figure	below.	

The	Settings	Activity	template	also	provides	the	function	of	listening	to	a	settings	change,	and	changing	the	summary	to
reflect	the	settings	change.	For	example,	if	you	change	the	"Add	friends	to	messages"	setting	(the	choices	are	Always,
When	possible,	or	Never),	the	choice	you	make	appears	in	the	summary	underneath	the	setting:	

9.2:	App	Settings

351

In	general,	you	need	not	change	the	Settings	Activity	template	code	in	order	to	customize	the	activity	for	the	settings	you
want	in	your	app.	You	can	customize	the	settings	titles,	summaries,	possible	values,	and	default	values	without	changing
the	template	code,	and	even	add	more	settings	to	the	groups	that	are	provided.	To	customize	the	settings,	edit	the	string
and	string	array	resources	in	the	strings.xml	file	and	the	layout	attributes	for	each	setting	in	the	files	in	the	xml	directory.

You	use	the	Settings	Activity	template	code	as-is.	To	make	it	work	for	your	app,	add	code	to	the	Main	Activity	to	set	the
default	settings	values,	and	to	read	and	use	the	settings	values,	as	shown	later	in	this	chapter.

Including	the	Settings	Activity	template	in	your	project

To	include	the	Settings	Activity	template	in	your	app	project	in	Android	Studio,	follow	these	steps:

1.	 Choose	New	>	Activity	>	Settings	Activity.
2.	 In	the	dialog	that	appears,	accept	the	Activity	Name	(SettingsActivity	is	the	suggested	name)	and	the	Title	(Settings).
3.	 Click	the	three	dots	at	the	end	of	the	Hierarchical	Parent	field	and	choose	the	parent	activity	(usually	MainActivity),	so

that	Up	navigation	in	the	Settings	Activity	returns	the	user	to	the	MainActivity.	Choosing	the	parent	activity
automatically	updates	the	AndroidManifest.xml	file	to	support	Up	navigation.

The	Settings	Activity	template	creates	the	XML	files	in	the	res	>	xml	directory,	which	you	can	add	to	or	customize	for	the
settings	you	want:

pref_data_sync.xml:	PreferenceScreen	layout	for	"Data	&	Sync"	settings.
pref_general.xml:	PreferenceScreen	layout	for	"General"	settings.
pref_headers.xml:	Layout	of	headers	for	the	Settings	main	screen.
pref_notification.xml:	PreferenceScreen	layout	for	"Notifications"	settings.

The	above	XML	layouts	use	various	subclasses	of	the	Preference	class	rather	than	View	objects,	and	direct
subclasses	provide	containers	for	layouts	involving	multiple	settings.	For	example,	PreferenceScreen	represents	a	top-
level	Preference	that	is	the	root	of	a	Preference	hierarchy.	The	above	files	use	PreferenceScreen	at	the	top	of	each
screen	of	settings.	Other	Preference	subclasses	for	settings	provide	the	appropriate	UI	for	users	to	change	the	setting.
For	example:

CheckBoxPreference:	A	checkbox	for	a	setting	that	is	either	enabled	or	disabled.
ListPreference:	A	dialog	with	a	list	of	radio	buttons.
SwitchPreference:	A	two-state	toggleable	option	(such	as	on/off	or	true/false).
EditTextPreference:	A	dialog	with	an	EditText	widget.
RingtonePreference:	A	dialog	with	ringtones	on	the	device.

The	Settings	Activity	template	also	provides	the	following:

String	resources	in	the	strings.xml	file	in	the	res	>	values	directory,	which	you	can	customize	for	the	settings	you	want.

All	strings	used	in	the	Settings	Activity,	such	as	the	titles	for	settings,	string	arrays	for	lists,	and	descriptions	for
settings,	are	defined	as	string	resources	at	the	end	of	this	file.	They	are	marked	by	comments	such	as		<!--	Strings
related	to	Settings	-->		and		<!--	Example	General	settings	-->	.

Tip:	You	can	edit	these	strings	to	customize	the	settings	you	need	for	your	app.

SettingsActivity	in	the	java	>	com.example.android.projectname	directory,	which	you	can	use	as	is.

The	activity	that	displays	the	settings.		SettingsActivity		extends		AppCompatPreferenceActivity		for	maintaining
compatibility	with	older	versions	of	Android.

AppCompatPreferenceActivity	in	the	java	>	com.example.android.projectname	directory,	which	you	use	as	is.

This	activity	is	a	helper	class	that	SettingsActivity	uses	to	maintain	backwards	compatibility	with	previous	versions	of
Android.

Using	preference	headers

9.2:	App	Settings

352

https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/preference/PreferenceScreen.html
https://developer.android.com/reference/android/preference/CheckBoxPreference.html
https://developer.android.com/reference/android/preference/ListPreference.html
https://developer.android.com/reference/android/preference/SwitchPreference.html
https://developer.android.com/reference/android/preference/EditTextPreference.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/preference/RingtonePreference.html

The	Settings	Activity	template	shows	preference	headers	on	the	main	screen	that	separate	the	settings	into	categories
(General,	Notifications,	and	Data	&	sync).	The	user	taps	a	heading	to	access	the	settings	under	that	heading.	On	larger
tablet	displays	(see	previous	figure),	the	headers	appear	in	the	left	pane	and	the	settings	for	each	header	appears	in	the
right	pane.

To	implement	the	headers,	the	template	provides	the	pref_headers.xml	file:

<preference-headers	xmlns:android="http://schemas.android.com/apk/res/android">

			<header

						android:fragment=

											"com.example.android.droidcafe.SettingsActivity$GeneralPreferenceFragment"

						android:icon="@drawable/ic_info_black_24dp"

						android:title="@string/pref_header_general"	/>

			<header

						android:fragment=

						"com.example.android.droidcafe.SettingsActivity$NotificationPreferenceFragment"

						android:icon="@drawable/ic_notifications_black_24dp"

						android:title="@string/pref_header_notifications"	/>

			<header

						android:fragment=

										"com.example.android.droidcafe.SettingsActivity$DataSyncPreferenceFragment"

						android:icon="@drawable/ic_sync_black_24dp"

						android:title="@string/pref_header_data_sync"	/>

</preference-headers>

The	XML	headers	file	lists	each	preferences	category	and	declares	the	fragment	that	contains	the	corresponding
preferences.

To	display	the	headers,	the	template	uses	the	following		onBuildHeaders()		method:

@Override

@TargetApi(Build.VERSION_CODES.HONEYCOMB)

public	void	onBuildHeaders(List<Header>	target)	{

								loadHeadersFromResource(R.xml.pref_headers,	target);

}

The	above	code	snippet	uses	the		loadHeadersFromResource()		method	of	the	PreferenceActivity	class	to	load	the	headers
from	the	XML	resource	(pref_headers.xml).	The	TargetApi	annotation	tells	Android	Studio's	Lint	code	scanning	tool	that	the
class	or	method	is	targeting	a	particular	API	level	regardless	of	what	is	specified	as	the	min	SDK	level	in	manifest.	Lint
would	otherwise	produce	errors	and	warnings	when	using	new	functionality	that	is	not	available	in	the	target	API	level.

Using	PreferenceActivity	with	fragments

The	Settings	Activity	template	provides	an	activity	(SettingsActivity)	that	extends	PreferenceActivity	to	create	a	two-pane
layout	to	support	large	screens,	and	also	includes	fragments	within	the	activity	to	display	lists	of	settings.	This	is	a	useful
pattern	if	you	have	multiple	groups	of	settings	and	need	to	support	tablet-sized	screens	as	well	as	smartphones.

The	following	shows	how	to	use	an	activity	that	extends		PreferenceActivity		to	host	one	or	more	fragments
(PreferenceFragment)	that	display	app	settings.	The	activity	can	host	multiple	fragments,	such	as
	GeneralPreferenceFragment		and		NotificationPreferenceFragment	,	and	each	fragment	definition	uses
	addPreferencesFromResource		to	load	the	settings	from	the	XML	preferences	file:

9.2:	App	Settings

353

https://developer.android.com/reference/android/preference/PreferenceActivity.html
https://developer.android.com/reference/android/annotation/TargetApi.html
https://developer.android.com/studio/write/lint.html
https://developer.android.com/reference/android/preference/PreferenceActivity.html
https://developer.android.com/reference/android/preference/PreferenceFragment.html

public	class	SettingsActivity	extends	AppCompatPreferenceActivity	{

			...

			public	static	class	GeneralPreferenceFragment	extends

																																														PreferenceFragment	{

			@Override

			public	void	onCreate(Bundle	savedInstanceState)	{

												super.onCreate(savedInstanceState);

												addPreferencesFromResource(R.xml.pref_general);

			...

			}

			public	static	class	NotificationPreferenceFragment	extends

																																														PreferenceFragment	{

			...

}

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Adding	Settings	to	an	App

Learn	more
Android	Studio	documentation:

Android	Studio	User	Guide
Android	API	Guide,	"Develop"	section:

Settings	(coding)
Preference	class
PreferenceFragment
Fragment
SharedPreferences
Saving	Key-Value	Sets

Material	Design	Specification:
Settings	(design)

9.2:	App	Settings

354

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/92_p_adding_settings_to_an_app.html
https://developer.android.com/studio/intro/index.html
https://developer.android.com/guide/topics/ui/settings.html
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/preference/PreferenceFragment.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/training/basics/data-storage/shared-preferences.html
https://material.google.com/patterns/settings.html

10.0:	SQLite	Primer
Contents:

SQL	databases
SQLite
Example	table
Transactions
Query	language
Queries	for	Android	SQLite
Cursors
Learn	more

This	course	assumes	that	you	are	familiar	with	databases	in	general,	SQL	databases	in	particular,	and	the	SQL	language
used	to	interact	with	them.	This	chapter	is	a	refresher	and	quick	reference	only.

SQL	databases
Store	data	in	tables	of	rows	and	columns.
The	intersection	of	a	row	and	column	is	called	a	field.
Fields	contain	data,	references	to	other	fields,	or	references	to	other	tables.
Rows	are	identified	by	unique	IDs.
Columns	are	identified	by	names	that	are	unique	per	table.

Think	of	it	as	a	spreadsheet	with	rows,	columns,	and	cells,	where	cells	can	contain	data,	references	to	other	cells,	and	links
to	other	sheets.

SQLite
SQLite	is	a	software	library	that	implements	SQL	database	engine	that	is:

self-contained	(requires	no	other	components)
serverless	(requires	no	server	backend)
zero-configuration	(does	not	need	to	be	configured	for	your	application)
transactional	(changes	within	a	single	transaction	in	SQLite	either	occur	completely	or	not	at	all)

SQLite	is	the	most	widely	deployed	database	engine	in	the	world.	The	source	code	for	SQLite	is	in	the	public	domain.

For	details	of	the	SQLite	database,	see	the	SQLite	website.

Example	table
SQLite	stores	data	in	tables.

Assume	the	following:

A	database	DATABASE_NAME
A	table	WORD_LIST_TABLE
Columns	for	_id,	word,	and	description

After	inserting	the	words	"alpha"	and	"beta",	where	alpha	has	two	definitions,	the	table	might	look	like	this:

DATABASE_NAME

10.0:	SQLite	Primer

355

https://www.sqlite.org/about.html

WORD_LIST_TABLE

_id word definition

1 "alpha" "first	letter"

2 "beta" "second	letter"

3 "alpha" "particle"

You	can	find	what's	in	a	specific	row	using	the	_id,	or	you	can	retrieve	rows	by	formulating	queries	that	select	rows	from	the
table	be	specifying	constraints.	You	use	the	SQL	query	language	discussed	below	to	create	queries.

Transactions
A	transaction	is	a	sequence	of	operations	performed	as	a	single	logical	unit	of	work.	A	logical	unit	of	work	must	exhibit	four
properties,	called	the	atomicity,	consistency,	isolation,	and	durability	(ACID)	properties,	to	qualify	as	a	transaction.

All	changes	within	a	single	transaction	in	SQLite	either	occur	completely	or	not	at	all,	even	if	the	act	of	writing	the	change
out	to	the	disk	is	interrupted	by

a	program	crash,
an	operating	system	crash,	or
a	power	failure.

Examples	of	transactions:

Transferring	money	from	a	savings	account	to	a	checking	account.
Entering	a	term	and	definition	into	dictionary.
Committing	a	changelist	to	the	master	branch.

ACID

Atomicity.	Either	all	of	its	data	modifications	are	performed,	or	none	of	them	are	performed.
Consistency.	When	completed,	a	transaction	must	leave	all	data	in	a	consistent	state.
Isolation.	Modifications	made	by	concurrent	transactions	must	be	isolated	from	the	modifications	made	by	any	other
concurrent	transactions.	A	transaction	either	recognizes	data	in	the	state	it	was	in	before	another	concurrent
transaction	modified	it,	or	it	recognizes	the	data	after	the	second	transaction	has	completed,	but	it	does	not	recognize
an	intermediate	state.
Durability.	After	a	transaction	has	completed,	its	effects	are	permanently	in	place	in	the	system.	The	modifications
persist	even	in	the	event	of	a	system	failure.

More	on	transactions.

Query	language
You	use	a	special	SQL	query	language	to	interact	with	the	database.	Queries	can	be	very	complex,	but	the	basic
operations	are

inserting	rows
deleting	rows
updating	values	in	rows
retrieving	rows	that	meet	given	criteria

On	Android,	the	database	object	provides	convenient	methods	for	inserting,	deleting,	and	updating	the	database.	You	only
need	to	understand	SQL	for	retrieving	data.

10.0:	SQLite	Primer

356

https://www.sqlite.org/atomiccommit.html

Full	description	of	the	query	language.

Query	structure

A	SQL	query	is	highly	structured	and	contains	the	following	basic	parts:

SELECT	word,	description	FROM	WORD_LIST_TABLE	WHERE	word="alpha"

Generic	version	of	sample	query:

SELECT	columns	FROM	table	WHERE	column="value"

Parts:

SELECT	columns—select	the	columns	to	return.	Use	*	to	return	all	columns.
FROM	table—specify	the	table	from	which	to	get	results.
WHERE—keyword	for	conditions	that	have	to	be	met.
column="value"—the	condition	that	has	to	be	met.

common	operators:	=,	LIKE,	<,	>
AND,	OR—connect	multiple	conditions	with	logic	operators.
ORDER	BY—omit	for	default	order,	or	specify	ASC	for	ascending,	DESC	for	descending.
LIMIT	is	a	very	useful	keyword	if	you	want	to	only	get	a	limited	number	of	results.

Sample	queries

1 SELECT	*	FROM	WORD_LIST_TABLE Get	the	whole	table.

2 SELECT	word,	definition	FROM
WORD_LIST_TABLE	WHERE	_id	>	2

Returns

	[["alpha",	"particle"]]	

3
SELECT	_id	FROM	WORD_LIST_TABLE
WHERE	word="alpha"	AND	definition	LIKE
"%art%"

Return	the	id	of	the	word	alpha	with	the	substring	"art"	in	the
definition.

	[["3"]]	

4 SELECT	*	FROM	WORD_LIST_TABLE
ORDER	BY	word	DESC	LIMIT	1

Sort	in	reverse	and	get	the	first	item.	This	gives	you	the	last
item	per	sort	order.	Sorting	is	by	the	first	column,	in	this	case,
the	_id.

	[["3",	"alpha",	"particle"]]	

5 SELECT	*	FROM	WORD_LIST_TABLE
LIMIT	2,1

Returns	1	item	starting	at	position	2.	Position	counting	starts
at	1	(not	zero!).	Returns		[["2",	"beta",	"second	letter"]]	

You	can	practice	creating	and	querying	databases	at	this	Fiddle	website	and	HeadFirst	Labs.

Queries	for	Android	SQLite
You	can	send	queries	to	the	SQLite	database	of	the	Android	system	as	raw	queries	or	as	parameters.

rawQuery(String	sql,	String[]	selectionArgs)	runs	the	provided	SQL	and	returns	a	Cursor	of	the	result	set.

The	following	table	shows	how	the	first	two	queries	from	above	would	look	as	raw	queries.

10.0:	SQLite	Primer

357

https://www.sqlite.org/lang.html
http://sqlfiddle.com/
http://www.headfirstlabs.com/sql_hands_on/
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#rawQuery(java.lang.String,%20java.lang.String[])
https://developer.android.com/reference/android/database/Cursor.html

1
String	query	=	"SELECT	*	FROM	WORD_LIST_TABLE";

rawQuery(query,	null);

2

query	=	"SELECT	word,	definition	FROM	WORD_LIST_TABLE	WHERE	_id>	?	";

String[]	selectionArgs	=	new	String[]{"2"}

rawQuery(query,	selectionArgs)	;

query(String	table,	String[]	columns,	String	selection,	String[]	selectionArgs,	String	groupBy,	String	having,	String
orderBy,	String	limit)	queries	the	given	table,	returning	a	Cursor	over	the	result	set.

Here's	a	query	showing	how	to	fill	in	the	arguments:

SELECT	*	FROM	WORD_LIST_TABLE

WHERE	word="alpha"

ORDER	BY	word	ASC

LIMIT	2,1;

Returns:

[["alpha",	"particle"]]

String	table	=	"WORD_LIST_TABLE"

String[]	columns	=	new	String[]{"*"};

String	selection	=	"word	=	?"

String[]	selectionArgs	=	new	String[]{"alpha"};

String	groupBy	=	null;

String	having	=	null;

String	orderBy	=	"word	ASC"

String	limit	=	"2,1"

query(table,	columns,	selection,	selectionArgs,	groupBy,	having,	orderBy,	limit);

Note	that	in	real	code,	you	wouldn't	create	variables	for	null	values.	See	the	SQLiteDatabase	documentation	for	versions	of
this	method	with	different	parameters.

Cursors
Queries	always	return	a	Cursor	object.	A	Cursor	is	an	object	interface	that	provides	random	read-write	access	to	the	result
set	returned	by	a	database	query.	It	points	to	the	first	element	in	the	result	of	the	query.

A	cursor	is	a	pointer	into	a	row	of	structured	data.	You	can	think	of	it	as	a	pointer	to	table	rows.

The	Cursor	class	provides	methods	for	moving	the	cursor	through	that	structure,	and	methods	to	get	the	data	from	the
columns	of	each	row.

When	a	method	returns	a	Cursor	object,	you	iterate	over	the	result,	extract	the	data,	do	something	with	the	data,	and	finally
close	the	cursor	to	release	the	memory.

You	will	learn	more	about	cursors	in	the	following	chapters.

Learn	more
SQLite	website

10.0:	SQLite	Primer

358

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#query(java.lang.String,%20java.lang.String[],%20java.lang.String,%20java.lang.String[],%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String)
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/reference/android/database/Cursor.html
https://www.sqlite.org/about.html

Full	description	of	the	query	language
SQLiteDatabase	class
Cursor	class

10.0:	SQLite	Primer

359

https://www.sqlite.org/lang.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/Cursor.html

10.1:	SQLite	Database
Contents:

Using	SQLite	databases	with	Android
Cursor
ContentValues
Implementing	an	SQLite	database
Database	operations
Instantiate	Open	Helper
Working	with	the	database
Transactions
Backing	up	databases
Shipping	a	database	with	your	APK
Related	practical
Learn	more

This	chapter	discusses	the	Android	framework's	SQLiteDatabase	and	SQLiteOpenHelper	classes.	It	is	not	an	introduction
to	SQLite	or	SQL	databases.The	chapter	assumes	that	you	are	familiar	with	SQL	databases	in	general,	and	basic	SQL
query	building.	Check	out	the	SQL	Primer	chapter	if	you	need	a	refresher.

Of	the	many	storage	options	discussed,	using	a	SQLite	database	is	one	of	the	most	versatile,	and	straightforward	to
implement.

An	SQLite	database	is	a	good	storage	solution	when	you	have	structured	data	that	you	need	to	store	persistently	and
access,	search,	and	change	frequently.
You	can	use	the	database	as	the	primary	storage	for	user	or	app	data,	or	you	can	use	it	to	cache	and	make	available
data	fetched	from	the	cloud.
If	you	can	represent	your	data	as	rows	and	columns,	consider	a	SQLite	database.
Content	providers,	which	will	be	introduced	in	a	later	chapter,	work	excellently	with	SQLite	databases.

When	you	use	an	SQLite	database,	represented	as	an	SQLiteDatabase	object,	all	interactions	with	the	database	are
through	an	instance	of	the	SQLiteOpenHelper	class	which	executes	your	requests	and	manages	your	database	for	you.
Your	app	should	only	interact	with	the	SQLiteOpenHelper,	which	will	be	described	below.

There	are	two	data	types	associated	with	using	SQLite	databases	in	particular,	Cursor	and	ContentValues.

Cursor
The	SQLiteDatabase	always	presents	the	results	as	a	Cursor	in	a	table	format	that	resembles	that	of	a	SQL	database.

You	can	think	of	the	data	as	an	array	of	rows.	A	cursor	is	a	pointer	into	one	row	of	that	structured	data.	The	Cursor	class
provides	methods	for	moving	the	cursor	through	the	data	structure,	and	methods	to	get	the	data	from	the	fields	in	each	row.

The	Cursor	class	has	a	number	of	subclasses	that	implement	cursors	for	specific	types	of	data.

SQLiteCursor	exposes	results	from	a	query	on	a	SQLiteDatabase.	SQLiteCursor	is	not	internally	synchronized,	so
code	using	a	SQLiteCursor	from	multiple	threads	should	perform	its	own	synchronization	when	using	the
SQLiteCursor.
MatrixCursor	is	an	all-rounder,	a	mutable	cursor	implementation	backed	by	an	array	of	objects	that	automatically
expands	internal	capacity	as	needed.

Some	common	operations	on	cursor	are:

getCount()	returns	the	number	of	rows	in	the	cursor.
getColumnNames()	returns	a	string	array	holding	the	names	of	all	of	the	columns	in	the	result	set	in	the	order	in	which

10.1:	SQLite	Database

360

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/reference/android/content/ContentValues.html
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/reference/android/database/sqlite/SQLiteCursor.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/MatrixCursor.html
https://developer.android.com/reference/android/database/AbstractCursor.html#getCount()
https://developer.android.com/reference/android/database/AbstractCursor.html#getColumnNames()

they	were	listed	in	the	result.
getPosition()	returns	the	current	position	of	the	cursor	in	the	row	set.
Getters	are	available	for	specific	data	types,	such	as	getString(int	column)	and	getInt(int	column).
Operations	such	as	moveToFirst()	and	moveToNext()	move	the	cursor.
close()	releases	all	resources	and	makes	the	cursor	completely	invalid.	Remember	to	call	close	to	free	resources!

Processing	cursors

When	a	method	call	returns	a	cursor,	you	iterate	over	the	result,	extract	the	data,	do	something	with	the	data,	and	finally,
you	must	close	the	cursor	to	release	the	memory.	Failing	to	do	so	can	crash	your	app	when	it	runs	out	of	memory.

The	cursor	starts	before	the	first	result	row,	so	on	the	first	iteration	you	move	the	cursor	to	the	first	result	if	it	exists.	If	the
cursor	is	empty,	or	the	last	row	has	already	been	processed,	then	the	loop	exits.	Don't	forget	to	close	the	cursor	once	you're
done	with	it.	(This	cannot	be	repeated	too	often.)

//	Perform	a	query	and	store	the	result	in	a	Cursor

Cursor	cursor	=	db.rawQuery(...);

try	{

				while	(cursor.moveToNext())	{

								//	Do	something	with	the	data

					}

}	finally	{

				cursor.close();

}

When	you	use	a	SQL	database,	you	can	implement	your	SQLiteOpenHelper	class	to	return	the	cursor	to	the	calling	activity
or	adapter,	or	you	can	convert	the	data	to	a	format	that	is	more	suitable	for	the	adapter.	The	advantage	of	the	latter	is	that
managing	the	cursor	(and	closing	it)	is	handled	by	the	open	helper,	and	your	user	interface	is	independent	of	what	happens
at	the	backend.	See	the	SQLite	Database	practical	for	an	implementation	example.

ContentValues
Similar	to	how	extras	stores	data,	an	instance	of	ContentValues	stores	data	as	key-value	pairs,	where	the	key	is	the	name
of	the	column	and	the	value	is	the	value	for	the	cell.	One	instance	of	ContentValues	represents	one	row	of	a	table.

The	insert()	method	for	the	database	requires	that	the	values	to	fill	a	row	are	passed	as	an	instance	of	ContentValues.

ContentValues	values	=	new	ContentValues();

//	Insert	one	row.	Use	a	loop	to	insert	multiple	rows.

values.put(KEY_WORD,	"Android");

values.put(KEY_DEFINITION,	"Mobile	operating	system.");

db.insert(WORD_LIST_TABLE,	null,	values);

Implementing	an	SQLite	database
To	implement	a	database	for	your	Android	app,	you	need	to	do	the	following.

1.	 (Recommended)	Create	a	data	model.
2.	 Subclass	SQLiteOpenHelper

i.	 Use	constants	for	table	names	and	database	creation	query

ii.	 Implement	onCreate	to	create	the	SQLiteDatabase	with	tables	for	your	data

iii.	 Implement	onUpgrade()

iv.	 Implement	optional	methods

10.1:	SQLite	Database

361

https://developer.android.com/reference/android/database/AbstractCursor.html#getPosition()
https://developer.android.com/reference/android/database/AbstractCursor.html#getString(int)
https://developer.android.com/reference/android/database/AbstractCursor.html#getInt(int)
https://developer.android.com/reference/android/database/AbstractCursor.html#moveToFirst()
https://developer.android.com/reference/android/database/AbstractCursor.html#moveToNext()
https://developer.android.com/reference/android/database/AbstractCursor.html#close()
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://developer.android.com/reference/android/content/ContentValues.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html

3.	 Implement	the	query(),	insert(),	delete(),	update(),	count()	methods	in	SQLiteOpenHelper.
4.	 In	your	MainActivity,	create	an	instance	of	SQLiteOpenHelper.
5.	 Call	methods	of	SQLiteOpenHelper	to	work	with	your	database.

Caveats:

When	you	implement	the	methods,	always	put	database	operations	into	try/catch	blocks.
The	sample	apps	do	not	validate	the	user	data.	When	you	write	an	app	for	publication,	always	make	sure	user	data	is
what	you	expect	to	avoid	the	injection	of	bad	data	or	execution	of	malicious	SQL	commands	into	your	database.

Data	model
It	is	a	good	practice	to	create	a	class	that	represents	your	data	with	getters	and	setters.

For	an	SQLite	database,	an	instance	of	this	class	could	represent	one	record,	and	for	a	simple	database,	one	row	in	a
table.

public	class	WordItem	{

				private	int	mId;

				private	String	mWord;

				private	String	mDefinition;

				//	Getters	and	setters	and	more

}

Subclass	SQLiteOpenHelper

Any	open	helper	you	create	must	extend	SQLiteOpenHelper.

public	class	WordListOpenHelper	extends	SQLiteOpenHelper	{

				public	WordListOpenHelper(Context	context)	{

							super(context,	DATABASE_NAME,	null,	DATABASE_VERSION);

							Log.d(TAG,	"Construct	WordListOpenHelper");

				}

}

Define	constants	for	table	names

While	not	required,	it	is	customary	to	declare	your	table,	column,	and	row	names	as	constants.	This	makes	your	code	a	lot
more	readable,	makes	it	easier	to	change	names,	and	your	queries	will	end	up	looking	a	lot	more	like	SQL.	You	can	do	this
in	the	open	helper	class,	or	in	a	separate	public	class;	you	will	learn	more	about	this	in	the	chapter	about	content	providers.

				private	static	final	int	DATABASE_VERSION	=	1;

		//	has	to	be	1	first	time	or	app	will	crash

		private	static	final	String	WORD_LIST_TABLE	=	"word_entries";

		private	static	final	String	DATABASE_NAME	=	"wordlist";

		//	Column	names...

		public	static	final	String	KEY_ID	=	"_id";

		public	static	final	String	KEY_WORD	=	"word";

		//	...	and	a	string	array	of	columns.

		private	static	final	String[]	COLUMNS	=	{KEY_ID,	KEY_WORD};

Define	query	for	creating	database

You	need	a	query	that	creates	a	table	to	create	a	database.	This	is	also	customarily	defined	as	a	string	constant.	This	basic
example	creates	one	table	with	a	column	for	an	auto-incrementing	id	and	a	column	to	hold	words.

10.1:	SQLite	Database

362

				private	static	final	String	WORD_LIST_TABLE_CREATE	=

												"CREATE	TABLE	"	+	WORD_LIST_TABLE	+	"	("	+

													KEY_ID	+	"	INTEGER	PRIMARY	KEY,	"	+

													//	will	auto-increment	if	no	value	passed

													KEY_WORD	+	"	TEXT);";

Implement	onCreate()	and	create	the	database
The	onCreate	method	is	only	called	if	there	is	no	database.	Create	your	tables	in	the	method,	and	optionally	add	initial
data.

@Override

public	void	onCreate(SQLiteDatabase	db)	{	//	Creates	new	database

			db.execSQL(WORD_LIST_TABLE_CREATE);	//	Create	the	tables

			fillDatabaseWithData(db);	//	Add	initial	data

			//	Cannot	initialize	mWritableDB	and	mReadableDB	here,	because

			//	this	creates	an	infinite	loop	of	on	Create()

			//	being	repeatedly	called.

}

Implement	onUpgrade()
This	is	a	required	method.

If	your	database	acts	only	as	a	cache	for	data	that	is	also	stored	online,	you	can	drop	the	the	tables	and	recreate	them	after
the	upgrade	is	complete.

Note:	If	your	database	is	the	main	storage,	you	must	preserve	the	user's	data	before	you	do	this	as	this	operation	destroys
all	the	data.	See	the	chapter	on	Storing	Data.

@Override

public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,	int	newVersion)	{

				//	SAVE	USER	DATA	FIRST!!!

								Log.w(WordListOpenHelper.class.getName(),

																"Upgrading	database	from	version	"	+	oldVersion	+	"	to	"

																								+	newVersion	+	",	which	will	destroy	all	old	data");

								db.execSQL("DROP	TABLE	IF	EXISTS	"	+	WORD_LIST_TABLE);

								onCreate(db);

}

Optional	methods

The	open	helper	class	provides	additional	methods	that	you	can	override	as	needed.

onDowngrade()—The	default	implementation	rejects	downgrades.
onConfigure()—called	before	onCreate.	Use	this	only	to	call	methods	that	configure	the	parameters	of	the	database
connection.
onOpen()—Any	work	other	than	configuration	that	needs	to	be	done	after	the	database	is	opened.

Database	operations
While	you	can	call	your	methods	in	the	open	helper	anything	you	want	and	have	them	return	anything	you	choose	to	the
calling	activity,	it	is	a	good	idea	to	go	with	the	standardized	query(),	insert(),	delete(),	update(),	count()	methods	that	match
the	API	of	the	database	and	content	providers.	Using	this	format	will	make	it	easier	to	add	a	content	provider	or	loader	in
the	future,	and	it	makes	it	easier	for	other	people	to	understand	your	code.

10.1:	SQLite	Database

363

https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#onDowngrade(android.database.sqlite.SQLiteDatabase,%20int,%20int)
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#onConfigure(android.database.sqlite.SQLiteDatabase)
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#onOpen(android.database.sqlite.SQLiteDatabase)

The	following	diagram	shows	how	the	different	API's	should	be	designed	for	consistency	and	clarity.	

query()

The	query	method	that	you	implement	in	your	open	helper	class	can	take	and	return	any	data	type	that	your	user	interface
needs.

Since	the	open	helper	provides	convenience	methods	for	inserting,	deleting,	and	updating	rows,	your	query	method	does
not	need	to	be	generic	and	support	these	operations.

In	general,	your	query	method	should	only	allow	queries	that	are	needed	by	your	app	and	not	be	general	purpose.

The	database	provides	two	methods	for	sending	queries:	SQLiteDatabase.rawQuery()	and	SQLiteDatabase.query(),	with
several	options	for	the	arguments.

SQLiteDatabase.rawQuery()

10.1:	SQLite	Database

364

The	open	helper	query	method	can	construct	an	SQL	query	and	send	it	as	a	rawQuery	to	the	database	which	returns	a
cursor.	If	your	data	is	supplied	by	your	app,	and	under	your	full	control,	you	can	use	rawQuery().

rawQuery(String	sql,	String[]	selectionArgs)

The	first	parameter	to	db.rawquery()	is	an	SQLite	query	string.
The	second	parameter	contains	the	arguments.

cursor	=	mReadableDB.rawQuery(queryString,	selectionArgs);

SQLiteDatabase.query()

If	you	are	processing	user-supplied	data,	even	after	validation,	it	is	more	secure	to	construct	a	query	and	use	a	version	of
the	SQLiteDatabase.query()	method	for	the	database.	The	arguments	are	what	you'd	expect	in	SQL	and	are	documented
in	the	SQLiteDatabase	documentation.

Cursor	query	(boolean	distinct,		String	table,	String[]	columns,	String	selection,

																String[]	selectionArgs,	String	groupBy,	String	having,		

																String	orderBy,String	limit)

Here	is	a	basic	example:

String[]	columns	=	new	String[]{KEY_WORD};

String	where	=		KEY_WORD	+	"	LIKE	?";

searchString	=	"%"	+	searchString	+	"%";

String[]	whereArgs	=	new	String[]{searchString};

cursor	=	mReadableDB.query(WORD_LIST_TABLE,	columns,	where,	whereArgs,	null,	null,	null);

Example	of	complete	open	helper	query()

public	WordItem	query(int	position)	{

			String	query	=	"SELECT		*	FROM	"	+	WORD_LIST_TABLE	+

											"	ORDER	BY	"	+	KEY_WORD	+	"	ASC	"	+

											"LIMIT	"	+	position	+	",1";

			Cursor	cursor	=	null;

			WordItem	entry	=	new	WordItem();

			try	{

							if	(mReadableDB	==	null)	{mReadableDB	=	getReadableDatabase();}

							cursor	=	mReadableDB.rawQuery(query,	null);

							cursor.moveToFirst();

							entry.setId(cursor.getInt(cursor.getColumnIndex(KEY_ID)));

							entry.setWord(cursor.getString(cursor.getColumnIndex(KEY_WORD)));

			}	catch	(Exception	e)	{

							Log.d(TAG,	"EXCEPTION!	"	+	e);

			}	finally	{

							//	Must	close	cursor	and	db	now	that	we	are	done	with	it.

							cursor.close();

							return	entry;

			}

}

insert()
The	open	helper's	insert()	method	calls	SQLiteDatabase.insert(),	which	is	a	SQLiteDatabase	convenience	method	to	insert
a	row	into	the	database.	(It's	a	convenience	method,	because	you	do	not	have	to	write	the	SQL	query	yourself.)

Format

long	insert(String	table,	String	nullColumnHack,	ContentValues	values)

10.1:	SQLite	Database

365

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#query(boolean,%20java.lang.String,%20java.lang.String[],%20java.lang.String,%20java.lang.String[],%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String)
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#insert(java.lang.String,%20java.lang.String,%20android.content.ContentValues)
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

The	first	argument	is	the	table	name.
The	second	argument	is	a		String	nullColumnHack	.	It's	a	workaround	that	allows	you	to	insert	empty	rows.	See	the
documentation	for	insert().	Use	null.
The	third	argument	must	be	a	ContentValues	container	with	values	to	fill	the	row.	This	sample	only	has	one	column;	for
tables	with	multiple	columns,	you	add	the	values	for	each	column	to	this	container.
The	database	method	returns	the	id	of	the	newly	inserted	item,	and	you	should	pass	that	on	to	the	application.

Example

newId	=	mWritableDB.insert(WORD_LIST_TABLE,	null,	values);

delete()

The	open	helper	delete	method	calls	the	databases	delete()	method,	which	is	a	convenience	method	so	that	you	do	not
have	to	write	the	full	SQL	query.

Format

int	delete	(String	table,	String	whereClause,	String[]	whereArgs)

The	first	argument	is	the	table	name.
The	second	argument	is	a	WHERE	clause.
The	third	argument	are	the	arguments	to	the	WHERE	clause.

You	can	delete	using	any	criteria,	and	the	method	returns	the	number	of	items	that	were	actually	deleted,	which	the	open
helper	should	return	also.

Example

deleted	=	mWritableDB.delete(WORD_LIST_TABLE,

																				KEY_ID	+	"	=?	",	new	String[]{String.valueOf(id)});

update()

The	open	helper	update	method	calls	the	database's	update()	method,	which	is	a	convenience	method	so	that	you	do	not
have	to	write	the	full	SQL	query.	The	arguments	are	familiar	from	previous	methods,	and	the	onUpdate	returns	the	number
of	rows	updated.

Format

int	update(String	table,	ContentValues	values,

				String	whereClause,	String[]	whereArgs)

The	first	argument	is	the	table	name.
The	second	argument	must	be	a	ContentValues	with	new	values	for	the	row.
The	third	argument	is	a	WHERE	clause.
The	fourth	argument	are	the	arguments	to	the	WHERE	clause.

Example

ContentValues	values	=	new	ContentValues();

values.put(KEY_WORD,	word);

mNumberOfRowsUpdated	=	mWritableDB.update(WORD_LIST_TABLE,

values,	//	new	values	to	insert

KEY_ID	+	"	=	?",

new	String[]{String.valueOf(id)});

10.1:	SQLite	Database

366

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#insert(java.lang.String,%20java.lang.String,%20android.content.ContentValues)
http://developer.android.com/reference/android/content/ContentValues.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#delete(java.lang.String,%20java.lang.String,%20java.lang.String[])
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#update(java.lang.String,%20android.content.ContentValues,%20java.lang.String,%20java.lang.String[])
http://developer.android.com/reference/android/content/ContentValues.html

count()

The	count()	method	returns	the	number	of	entries	in	the	database.	If	you	are	using	a	RecyclerView.Adapter,	it	has	to
implement	getItemCount(),	which	needs	to	get	the	number	of	rows	from	the	open	helper	which	needs	to	get	it	from	the
database.

In	adapter

@Override

public	int	getItemCount()	{

				return	(int)	mDB.count();

}

In	the	open	helper

public	long	count(){

				if	(mReadableDB	==	null)	{mReadableDB	=	getReadableDatabase();}

				return	DatabaseUtils.queryNumEntries(mReadableDB,	WORD_LIST_TABLE);

}

queryNumEntries())	is	a	method	in	the	public	DatabaseUtils	class,	which	provides	many	convenience	methods	for	working
with	cursors,	databases,	and	also	content	providers.

Instantiate	Open	Helper
To	get	a	handle	to	the	database,	In	MainActivity,	in	onCreate,	call:

	mDB	=	new	WordListOpenHelper(this);	

Working	with	the	database
It	is	a	common	pattern	to	combine	a	SQLiteDatabase	backend	with	a	RecyclerView	to	display	the	data.

For	example:

Pressing	the	FAB	could	start	an	activity	that	gets	input	from	the	user	and	stores	it	into	the	database	as	a	new	or
updated	item.
Swiping	an	item	might	delete	it	after	the	user	confirms	deletion.

Transactions

10.1:	SQLite	Database

367

https://developer.android.com/reference/android/database/DatabaseUtils.html#queryNumEntries(android.database.sqlite.SQLiteDatabase,%20java.lang.String,%20java.lang.String
https://developer.android.com/reference/android/database/DatabaseUtils.html

Use	transactions

when	performing	multiple	operations	that	all	need	to	complete	to	keep	database	consistent,	for	example,	updating
pricing	of	related	items	for	a	sale	event.
to	batch	multiple	independent	operations	to	improve	performance,	such	as	mass	inserts.

Transactions	can	be	nested,	and	the	SQLiteDatabase	class	provides	additional	methods	to	manage	nested	transactions.
See	SQLiteDatabase	references	documentation.

Transaction	idiom

db.beginTransaction();

try	{

		...

		db.setTransactionSuccessful();

}	finally	{

		db.endTransaction();

}

Backing	up	databases
It	is	a	good	idea	to	back	up	your	app's	database.

You	can	do	so	using	the	Cloud	Backup	options	discussed	in	the	Storage	Options	chapter.

Shipping	a	database	with	your	app
Sometimes	you	may	want	to	include	a	populated	database	with	your	app.	There	are	several	ways	in	which	to	do	that,	and
there	are	trade-offs	for	each.

Include	the	SQL	commands	with	the	application	and	have	it	create	the	database	and	insert	the	data	on	first	use.	This	is
basically	what	you	will	do	in	the	practical	for	data	storage.	If	the	amount	of	data	you	want	put	in	the	database	is	small,
just	an	example	so	that	the	user	gets	to	see	something,	you	can	use	this	method.
Ship	the	data	with	the	APK	as	a	resource,	and	build	the	database	when	the	user	opens	the	app	for	the	first	time.	This
is	similar	to	the	first	method,	but	instead	of	defining	your	data	in	your	code,	you	put	it	in	a	resource,	for	example,	in
CSV	format.	You	can	then	read	the	data	with	an	input	stream	and	add	it	to	the	database.
Build	and	pre-populate	the	SQLite	database	and	include	it	in	the	APK.	With	this	method	you	write	an	app	that	creates
and	populates	a	database.	You	can	do	this	on	the	emulator.	You	then	copy	the	file	in	which	your	database	is	actually
stored	("/data/data/YOUR_PACKAGE/databases/"	directory)	and	include	it	as	an	asset	with	your	app.	When	the	app	is
started	for	the	first	time,	you	copy	the	database	file	back	into	the	"/data/data/YOUR_PACKAGE/databases/"	directory.

The	SQLiteAssetHelper	class,	which	you	can	download	from	Github,	extends	SQLiteOpenHelper	to	help	you	do	this.	And
this	Stackoverflow	post	discusses	this	topic	in	more	detail.

Note	that	for	a	larger	database,	populating	the	database	should	be	done	in	the	background,	and	your	app	should	not	crash
if	there	is	no	database	yet,	or	the	database	is	empty.

Related	practical
The	related	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

SQLite	Data	Storage
Searching	a	SQLite	Database

Learn	more

10.1:	SQLite	Database

368

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/training/backup/index.html
http://github.com/jgilfelt/android-sqlite-asset-helper
http://stackoverflow.com/questions/513084/how-to-ship-an-android-application-with-a-database
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/101a_p_sqlite_data_storage.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/101b_p_searching_an_sqlite_database.html

Storage	Options
Saving	Data	in	SQL	Databases
SQLiteDatabase	class
ContentValues	class
SQLiteOpenHelper	class
Cursor	class
SQLiteAssetHelper	class	from	Github

10.1:	SQLite	Database

369

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/training/basics/data-storage/databases.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/content/ContentValues.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/database/Cursor.html
http://github.com/jgilfelt/android-sqlite-asset-helper

11.1:	Share	Data	Through	Content	Providers
Contents:

What	is	a	Content	Provider
What	is	a	Content	Resolver
Example	of	an	app	sharing	data	using	a	Content	Provider
What	Content	Providers	are	good	for
App	Architecture	with	a	Content	Provider
Implementing	a	Content	Provider
Data
Contract
Methods:	insert,	delete,	update,	query
query()	method
Using	a	Content	Resolver
Permissions	for	sharing
Related	practical
Learn	more

What	is	a	Content	Provider?
A	ContentProvider	is	a	component	that	interacts	with	a	repository.	The	app	doesn't	need	to	know	where	or	how	the	data	is
stored,	formatted,	or	accessed.

A	content	provider:

Separates	data	from	the	app	interface	code
Provides	a	standard	way	of	accessing	the	data
Makes	it	possible	for	apps	to	share	data	with	other	apps
Is	agnostic	to	the	repository,	which	could	by	a	database,	a	file	system,	or	the	cloud.

What	is	a	Content	Resolver?
To	get	data	and	interact	with	a	content	provider,	an	app	uses	a	ContentResolver	to	send	requests	to	the	content	provider.

The	ContentResolver	object	provides	query(),	insert(),	update(),	and	delete()	methods	for	accessing	data	from	a	content
provider.

Each	request	consists	of	a	URI	and	a	SQL-like	query,	and	the	response	is	a	Cursor	object.

Note:	You	learned	about	cursors	in	the	Data	Storage	chapters,	and	there	is	a	recap	later	in	this	chapter.
The	following	diagram	shows	the	query	flow	from	an	activity	using	a	content	resolver	to	the	content	provider	to	data	in	a
SQL	database,	and	back.	Note	that	storing	the	data	in	a	SQLite	database	is	common,	but	not	required.	

Example	of	an	app	sharing	data	using	a	Content	Provider

11.1:	Share	Data	Through	Content	Providers

370

https://developer.android.com/guide/topics/providers/content-provider-basics.html
https://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/reference/android/database/Cursor.html

Consider	an	app	that	keeps	an	inventory	of	hats	and	makes	it	available	to	other	apps	that	want	to	sell	hats.	The	app	that
owns	the	data	manages	the	inventory,	but	does	not	have	a	customer-facing	interface.	Two	apps,	one	that	sells	red	hats	and
one	that	sells	fancy	hats,	access	the	inventory	repository,	and	each	fetch	data	relevant	for	their	shopping	apps.	

What	Content	Providers	are	good	for
Content	providers	are	useful	for	apps	that	want	to	make	data	available	to	other	apps.

With	a	content	provider,	you	can	allow	multiple	other	apps	to	securely	access,	use,	and	modify	a	single	data	source
that	your	app	provides.	Examples:	Warehouse	inventory	for	retail	stores,	game	scores,	or	a	collection	of	physics
problems	for	colleges.
For	access	control,	you	can	specify	levels	of	permissions	for	your	content	provider,	specifying	how	other	apps	can
access	the	data.	For	example,	stores	may	not	be	allowed	to	change	the	warehouse	inventory	data.
You	can	store	data	independently	from	the	app,	because	the	content	provider	sits	between	your	user	interface	and
your	stored	data.	You	can	change	how	the	data	is	stored	without	needing	to	change	the	user-facing	code.	For
example,	you	can	build	a	prototype	of	your	shopping	app	using	mock	inventory	data,	then	later	replace	it	with	an	SQL
database	for	the	real	data.	You	could	even	store	some	of	your	data	in	the	cloud	and	some	locally,	and	it	would	be	all
the	same	to	your	users.
Another	benefit	of	separating	data	from	the	user	interface	with	a	content	provider	is	that	development	teams	can	work
independently	on	the	user	interface	and	data	repository	of	your	app.	For	larger,	complex	apps	it	is	very	common	that
the	user	interface	and	the	data	backend	are	developed	by	different	teams,	and	they	can	even	be	separate	apps;	that
is,	it	is	not	required	that	the	app	with	the	content	provider	have	a	user	interface.	For	example,	your	inventory	app	could
consist	only	of	the	data	and	the	content	provider.
There	are	other	classes	that	expect	to	interact	with	a	content	provider.	For	example,	you	must	have	a	content	provider
to	use	a	loader,	such	as	CursorLoader,	to	load	data	in	the	background.	You	will	learn	about	loaders	in	the	next	chapter.

Note:	If	your	app	is	the	only	one	using	the	data,	and	you	are	developing	all	of	it	by	yourself,	you	probably	don't	need	a
content	provider.

App	Architecture	with	a	Content	Provider
Architecturally,	the	content	provider	is	a	layer	between	the	content-providing	app's	data	storage	backend	and	the	rest	of	the
app,	separating	the	data	and	the	interface.

11.1:	Share	Data	Through	Content	Providers

371

To	give	you	a	picture	of	the	whole	content	provider	architecture,	this	section	shows	and	summarizes	all	the	parts	of	the
implemented	content	provider	architecture,	as	shown	in	the	following	diagram.	Each	part	will	be	discussed	in	detail	next.	

Data	and	Open	Helper:	The	data	repository.	The	data	could	be	in	a	database,	a	file,	on	the	internet,	generated
dynamically,	or	even	a	mix	of	these.	For	example,	if	you	had	a	dictionary	app,	the	base	dictionary	could	be	stored	in	a
SQLite	database	on	the	user's	device.	If	a	definition	is	not	in	the	database,	it	could	get	fetched	from	the	internet,	and	if	that
fails,	too,	the	app	could	ask	the	user	to	provide	a	definition	or	check	their	spelling.

Data	used	with	content	providers	is	commonly	stored	in	SQLite	databases,	and	the	content	provider	API	mirrors	this
assumption.

Contract:	The	contract	is	a	public	class	that	exposes	important	information	about	the	content	provider	to	other	apps.	This
usually	includes	the	URI	schemes,	important	constants,	and	the	structure	of	the	data	that	will	be	returned.	For	example,	for
the	hat	inventory	app,	the	contract	could	expose	the	names	of	the	columns	that	contain	the	price	and	name	of	a	product,
and	the	URI	for	retrieving	an	inventory	item	by	part	number.

Content	Provider:	The	content	provider	extends	the	ContentProvider	class	and	provides	query(),	insert(),	update(),	and
delete()	methods	for	accessing	the	data.	In	addition,	it	provides	a	public	and	secure	interface	to	the	data,	so	that	other	apps
can	access	the	data	with	the	appropriate	permissions.	For	example,	to	get	inventory	information	from	your	app's	database,
the	retail	hat	app	would	connect	to	the	content	provider,	not	to	the	database	directly,	as	that	is	not	permitted.

The	app	that	owns	the	data	specifies	what	permissions	other	apps	need	to	have	to	work	with	the	content	provider.	For
example,	if	you	have	an	app	that	provides	inventory	to	retail	stores,	your	app	owns	the	data	and	determines	the	access
permissions	of	other	apps	to	the	data.	Permissions	are	specified	in	the	Android	Manifest.

Content	Resolver:	Content	providers	are	always	accessed	through	a	content	resolver.	Think	of	the	content	resolver	as	a
helper	class	that	manages	all	the	details	of	connecting	to	a	content	provider	for	you.	Mirroring	the	content	provider's	API,
the	ContentResolver	object	provides	you	with	query(),	insert(),	update(),	and	delete()	methods	for	accessing	data	of	a
content	provider.	For	example,	to	get	get	all	the	inventory	items	that	are	red	hats,	a	hat	store	app	would	build	a	query	for
red	hats,	and	use	a	content	resolver	to	send	that	query	to	the	content	provider.

Implementing	a	Content	Provider
Referring	to	the	previous	diagram,	to	implement	a	content	provider	you	need:

Data,	for	example,	in	a	database.
A	way	for	accessing	the	data	storage,	for	example,	through	an	open	helper	for	a	database.
A	declaration	of	your	content	provider	in	the	Android	Manifest	to	make	it	available	to	your	own	and	other	apps.

11.1:	Share	Data	Through	Content	Providers

372

https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/content/ContentResolver.html

The	subclass	of	ContentProvider	that	implements	the	query(),	insert(),	delete(),	update(),	count(),	and	getType()
methods.
Public	contract	class	that	exposes	the	URI	scheme,	table	names,	MIME	type,	and	important	constants	to	other	classes
and	apps.	While	this	is	not	mandatory,	without	it,	other	apps	cannot	know	how	to	access	your	content	provider.
A	content	resolver	to	access	the	content	provider	using	the	appropriate	methods	and	queries.

Let's	take	a	look	at	each	of	these	components.

Data
The	data	is	often	stored	in	a	SQLite	database,	but	this	is	not	mandatory.	Data	could	be	stored	in	a	file	or	file	system,	on	the
internet,	or	created	dynamically.	Or	even	a	mix	of	these	options.	To	the	app,	the	content	resolver	the	fetched	data	always	as
a	Cursor	object,	as	if	it	all	came	from	the	same	source	and	in	the	same	format.

The	content	provider	might	access	the	data	directly	in	the	case	of	files,	or	it	might	do	so	through	a	helper	class.	For
example,	apps	typically	use	an	open	helper	to	interact	with	a	SQLite	database,	and	the	content	provider	interacts	with	the
open	helper	to	get	the	data.

Typically,	the	data	is	presented	to	the	content	provider	by	the	data	store	as	tables,	similar	to	database	tables,	where	each
row	represents	one	entry,	and	each	column	represents	an	attribute	for	that	entry.	For	example,	each	row	contains	one
contact,	and	may	have	columns	for	email	addresses	and	phone	numbers.	The	structure	of	the	tables	is	exposed	in	the
contract.

Note:	If	you	are	just	working	with	files,	you	can	use	the	predefined	FileProvider	class.

Contract
The	contract	is	a	public	class	that	exposes	important	information	about	an	app's	content	provider	so	that	other	apps	know
how	to	access	and	use	the	content	provider.

Using	a	contract	separates	public	from	private	app	information,	design	from	implementation,	and	gives	other	apps	one
place	to	get	all	the	information	they	need	to	work	with	a	content	provider.	While	the	underlying	app	may	change,	a	contract
defines	an	API	that	ideally	does	not	change	once	the	app	is	published.

The	contract	for	a	content	provider	typically	includes:

Content	URI	and	URI	scheme.	The	URI	scheme	shows	how	to	build	URIs	to	access	the	content	provider's	data.	It's
the	API	for	the	data.
Table	constants.	Makes	table	and	column	names	available	as	constants,	because	they	are	needed	to	extract	data
from	the	returned	cursor	object.
MIME	types,	which	have	information	on	the	data	format,	so	that	the	app	can	appropriately	process	returned	data.	For
example,	that	data	could	be	encoded	in	JSON	or	HTML,	or	use	a	custom	format.
Other	shared	constants	that	make	it	more	convenient	for	an	app	to	use	the	content	provider.

Note:	Contracts	are	not	limited	to	content	providers.	You	can	use	a	contract	anytime	you	want	to	share	constants	across
classes	of	your	app	or	make	information	about	your	app	available	to	other	apps.

URI	Scheme	&	Content	URI

Apps	send	requests	to	the	content	provider	using	Uniform	Resource	Identifiers	or	URIs.

A	content	URI	for	content	providers	has	this	general	form:

scheme://authority/path/ID

scheme	is	always	content://	for	content	URIs.

11.1:	Share	Data	Through	Content	Providers

373

https://developer.android.com/training/basics/data-storage/databases.html
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

authority	represents	the	domain,	and	for	content	providers	customarily	ends	in		.provider	
path	is	the	path	to	the	data.
ID	uniquely	identifies	the	data	set	to	search.

For	example,	the	following	URI	could	be	used	to	request	all	the	entries	in	the	"words"	table:

content://com.android.example.wordcontentprovider.provider/words

The	URI	scheme	for	a	content	provider	is	defined	in	the	Contract	so	that	it	is	available	to	any	app	that	wants	to	query	this
content	provider.	Customarily,	this	is	done	defining	constants	for	AUTHORITY,	CONTENT_PATH,	and	CONTENT_URI.

AUTHORITY.	Represents	the	domain.	For	content	providers	this	includes	the	unique	package	name	and	ends	in
	.provider	

CONTENT_PATH.	The	content	path	is	an	abstract	semantic	identifier	of	the	data	you	are	interested	in.	It	does	not
predict	or	presume	in	what	form	the	data	is	stored	or	organized	in	the	background.	As	such,	the	path	could	resolve	in
the	name	of	a	table,	the	name	of	a	file,	or	the	name	of	the	list.
CONTENT_URI.	This	is	a	content://	style	URI	to	one	set	of	data.	If	you	have	multiple	"data	containers"	in	the	backend,
you	would	create	a	content	URI	for	each.	For	example,	you	would	create	a	content	URI	for	each	table	that	can	be
queried.	Use	the	Uri	helper	class	for	building	and	manipulating	URIs.

In	code,	this	might	look	as	follows:

public	static	final	String	AUTHORITY	=

"com.android.example.minimalistcontentprovider.provider";

public	static	final	String	CONTENT_PATH	=		"words";

public	static	final	Uri	CONTENT_URI	=	Uri.parse("content://"	+	AUTHORITY	+

"/"	+	CONTENT_PATH);

Tables	in	the	Contract
A	common	way	of	organizing	a	contract	class	is	to	put	definitions	that	are	global	to	your	database	into	the	root	level	of	the
class.	Usually,	this	is	the	name	of	the	database.

Create	a	static	abstract	inner	class	for	each	table	with	the	column	names.	This	inner	class	commonly	implements	the
BaseColumns	interface.	By	implementing	the	BaseColumns	interface,	your	class	can	inherit	a	primary	key	field	called	_ID
that	some	Android	classes,	such	as	cursor	adapters,	expect	to	exist.	This	is	not	required,	but	can	help	your	database	work
harmoniously	with	the	Android	framework.

Your	code	in	the	contract	might	look	like	this:

public	static	final	String	DATABASE_NAME	=	"wordlist";

public	static	abstract	class	WordList	implements	BaseColumns	{

				public	static	final	String	WORD_LIST_TABLE	=	"word_entries";

				//	Column	names...

				public	static	final	String	KEY_ID	=	"_id";

				public	static	final	String	KEY_WORD	=	"word"

}

MIME	Type
The	MIME	type	tells	an	app,	what	type	and	format	received	data	is	in,	so	that	it	can	process	the	data	appropriately.
Common	MIME	types	include		text/html		for	web	pages,	and		application/json	.	If	your	content	provider	returns	data	in
either	of	those	standard	formats,	you	should	use	the	standard	MIME	types.	A	full	list	of	these	standard	types	is	available	on
the	IANA	MIME	Media	Types	website.

However,	your	content	provider	probably	returns	data	specific	to	your	app.	In	that	case,	you	will	need	to	specify	a	custom
MIME	type.

11.1:	Share	Data	Through	Content	Providers

374

https://developer.android.com/reference/android/net/Uri.html
https://developer.android.com/reference/android/provider/BaseColumns.html
https://en.wikipedia.org/wiki/Media_type
http://www.iana.org/assignments/media-types/index.htm

For	content	URIs	that	point	to	a	row	or	rows	of	table	data,	and	that	are	thus	unique	to	your	app,	the	MIME	type	should	be	in
Android's	vendor-specific	MIME	format.	The	general	format	is:

type.subtype/provider-specific-part

Where	the	parts	should	be:

Type	part:	vnd
Subtype	part:

If	the	URI	pattern	is	for	a	single	row:	android.cursor.item/
If	the	URI	pattern	is	for	more	than	one	row:	android.cursor.dir/

Provider-specific	part:	vnd..
You	supply	the	and	.

The	value	should	be	globally	unique.	A	good	choice	for	is	your	company's	name	or	some	part	of	your	application's
Android	package	name.
The	value	should	be	unique	to	the	corresponding	URI	pattern.	A	good	choice	for	the	is	a	string	that	identifies	the
table	associated	with	the	URI.

For	example,	if	a	provider's	authority	is	com.example.app.provider,	and	it	exposes	a	table	named	"words",	the	MIME	type
for	multiple	rows	in	"words"	is:

vnd.android.cursor.dir/vnd.com.example.provider.words

For	a	single	row	of	"words",	the	MIME	type	is:

vnd.android.cursor.item/vnd.com.example.provider.words

And	you	would	specify	it	in	your	contract	as:

static	final	String	SINGLE_RECORD_MIME_TYPE	=

								"vnd.android.cursor.item/vnd.com.example.provider.words";

static	final	String	MULTIPLE_RECORDS_MIME_TYPE	=

								"vnd.android.cursor.item/vnd.com.example.provider.words";

An	app	can	call	the	getType()	method	of	a	content	provider	to	find	out	what	type	of	data	to	expect.	Your	getType()	method
might	look	like	this:

@Override

public	String	getType(Uri	uri)	{

			switch	(sUriMatcher.match(uri))	{

							case	URI_ALL_ITEMS_CODE:

											return	MULTIPLE_RECORDS_MIME_TYPE;

							case	URI_ONE_ITEM_CODE:

											return	SINGLE_RECORD_MIME_TYPE;

							default:

											return	null;

			}

}

Read	more	about	MIME	types	for	content	providers	in	the	Android	developer	documentation.

Note:	The	MIME	type	does	not	tell	the	clients	how	to	process	that	data.	As	such,	the	custom	MIME	type	only	provides	a
hint,	and	the	contract	should	provide	additional	information	to	the	client	as	to	what	the	expected	data	formats	are.

Methods:	insert,	delete,	update,	query

11.1:	Share	Data	Through	Content	Providers

375

https://developer.android.com/guide/topics/providers/content-provider-creating.html#MIMETypes

The	content	resolver	makes	available	query,	insert,	delete,	and	update	methods,	and	the	content	provider	implements
those	same	methods	to	access	the	data.

As	such,	it	is	a	good	practice	to	keep	the	names,	method	arguments,	and	return	values	consistent	between	all	components.
This	makes	implementation	and	maintenance	a	lot	easier.

The	following	diagram	shows	the	APIs	between	the	conceptual	building	blocks	of	an	app	that	uses	a	content	provider	to
access	data.	Note	in	particular:

The	methods	are	named	the	same	and	return	the	same	data	type	throughout	the	stack	(except	for	insert()).
Because	it	is	common	for	a	content	provider	to	connect	to	a	database,	the	query	method	returns	a	cursor.	If	your
backend	is	not	a	database,	the	content	provider	must	do	the	work	of	converting	the	returned	data	into	the	cursor
format.
This	diagram	does	not	show	additional	helper	classes,	such	as	open	helpers	for	databases,	that	may	also	use	the
same	API	convention.	

When	you	create	a	content	provider	by	extending	the	ContentProvider	class,	you	need	to	implement	the	insert,	delete,
update,	and	query	methods.	If	you	follow	the	principle	of	making	the	method	signatures	the	same	across	components,
passing	data	back	and	forth	does	not	require	a	lot	of	code.

Here	is	are	sample	methods	in	a	content	provider.	Note	that	the	content	provider	receives	the	values	to	insert	in	the	correct
type,	as	ContentValues,	calls	the	database,	and	builds	and	returns	the	required	Uri	for	the	content	resolver.

Insert	method

/**

*	Inserts	one	row.

*

*	@param	uri	Uri	for	insertion.

*	@param	values	Container	for	Column/Row	key/value	pairs.

*	@return	URI	for	the	newly	created	entry.

*/

@Override

public	Uri	insert(Uri	uri,	ContentValues	values)	{

			long	id	=	mDB.insert(values);

			return	Uri.parse(CONTENT_URI	+	"/"	+	id);

}

Delete	method

11.1:	Share	Data	Through	Content	Providers

376

https://developer.android.com/reference/android/content/ContentProvider.html

/**

*	Deletes	records(s)	specified	by	selectionArgs.

*

*	@param	uri	URI	for	deletion.

*	@param	selection	Where	clause.

*	@param	selectionArgs	Where	clause	arguments.

*	@return	Number	of	records	affected.

*/

@Override

public	int	delete(Uri	uri,	String	selection,	String[]	selectionArgs)	{

			return	mDB.delete(parseInt(selectionArgs[0]));

}

Update	method

/**

*	Updates	records(s)	specified	by	selection/selectionArgs	combo.

*

*	@param	uri	URI	for	update.

*	@param	values	Container	for	Column/Row	key/value	pairs.

*	@param	selection	Where	clause.

*	@param	selectionArgs	Where	clause	arguments.

*	@return	Number	of	records	affected.

*/

@Override

public	int	update(Uri	uri,	ContentValues	values,	String	selection,	String[]	selectionArgs)	{

			return	mDB.update(parseInt(selectionArgs[0]),	values.getAsString("word"));

}

query()	method
The	query	method	in	the	content	provider	has	the	following	signature:

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,String[]	selectionArgs,	String	sortOrder){}

The	arguments	represent	the	parts	of	an	SQL	query	and	are	discussed	below.	The	query	method	of	the	content	provider
must	parse	the	URI	argument	and	determine	the	appropriate	action.

URI	Matching

It	is	a	good	practice	to	use	an	instance	of	the	UriMatcher	class	to	match	the	URIs.	UriMatcher	is	a	helper	class	for	matching
URIs	for	content	providers.

1.	 Create	a	new	UriMatcher	in	your	content	provider.

private	static	UriMatcher	sUriMatcher	=	new	UriMatcher(UriMatcher.NO_MATCH);

2.	 In	onCreate()	add	the	URIs	to	match	the	the	matcher.	These	are	the	content	URIs	defined	in	the	Contract.	You	may
want	to	do	this	in	a	separate	method,	initializeUriMatching()	that	you	call	in	onCreate().	The	example	code	includes
URIs	requesting	all	items,	one	item	by	ID,	and	the	item	count.

11.1:	Share	Data	Through	Content	Providers

377

https://developer.android.com/reference/android/content/UriMatcher.html

/**

*	Defines	the	accepted	Uri	schemes	for	this	content	provider.

*	Calls	addURI()	for	all	of	the	content	URI	patterns	that	the	provider	should	recognize.

*/

private	void	initializeUriMatching()	{

			//	Matches	a	URI	that	is	just	the	authority	+	the	path,

			//	triggering	the	return	of	all	words.

			sUriMatcher.addURI(AUTHORITY,	CONTENT_PATH,	URI_ALL_ITEMS_CODE);

			//	Matches	a	URI	that	references	one	word	in	the	list	by	its	index.

			sUriMatcher.addURI(AUTHORITY,	CONTENT_PATH	+	"/#",	URI_ONE_ITEM_CODE);

			//	Matches	a	URI	that	returns	the	number	of	rows	in	the	table.

			sUriMatcher.addURI(AUTHORITY,	CONTENT_PATH	+	"/"	+	COUNT,	URI_COUNT_CODE);

}

The	query	method	switches	on	the	matching	URI	to	query	the	database	for	all	items,	one	item,	or	an	item	count,	as	shown
in	this	example	code.

@Override

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,	String[]	selectionArgs,

																			String	sortOrder)	{

			Cursor	cursor	=	null;

			//	Determine	integer	code	from	the	URI	matcher	and	switch	on	it.

			switch	(sUriMatcher.match(uri))	{

							case	URI_ALL_ITEMS_CODE:

											cursor	=		mDB.query(ALL_ITEMS);

											Log.d(TAG,	"case	all	items	"	+	cursor);

											break;

							case	URI_ONE_ITEM_CODE:

											cursor	=		mDB.query(parseInt(uri.getLastPathSegment()));

											Log.d(TAG,	"case	one	item	"	+	cursor);

											break;

							case	URI_COUNT_CODE:

											cursor	=	mDB.count();

											Log.d(TAG,	"case	count	"	+	cursor);

											break;

							case	UriMatcher.NO_MATCH:

											//	You	should	do	some	error	handling	here.

											Log.d(TAG,	"NO	MATCH	FOR	THIS	URI	IN	SCHEME:	"	+	uri);

											break;

							default:

											//	You	should	do	some	error	handling	here.

											Log.d(TAG,	"INVALID	URI	-	URI	NOT	RECOGNIZED:	"		+	uri);

			}

			return	cursor;

}

Using	a	Content	Resolver
The	ContentResolver	object	provides	methods	to	query(),	insert(),	delete(),	and	update()	data.	Thus,	the	content	resolver
mirrors	the	content	providers	API	and	manages	all	interaction	with	the	content	provider	for	you.	In	most	situations,	you	can
use	the	default	content	resolver	provided	by	the	Android	system.

Cursors

The	content	provider	always	presents	the	query	results	as	a	Cursor	in	a	table	format	that	resembles	of	a	SQL	database.
This	is	independent	of	how	the	data	is	actually	stored.

A	cursor	is	a	pointer	into	a	row	of	structured	data.	You	can	think	of	it	as	a	linked	list	of	rows.	The	Cursor	class	provides
methods	for	moving	the	cursor	through	that	structure,	and	methods	to	get	the	data	from	the	columns	of	each	row.

11.1:	Share	Data	Through	Content	Providers

378

https://developer.android.com/reference/android/database/Cursor.html

When	a	method	returns	a	cursor,	you	iterate	over	the	result,	extract	the	data,	do	something	with	the	data,	and	finally	close
the	cursor	to	release	the	memory.

If	you	use	a	SQL	database,	as	shown	above,	you	can	implement	your	open	helper	to	return	a	cursor,	and	then	again,	the
content	provider	returns	a	cursor	via	the	content	resolver.	If	your	data	storage	returns	data	in	a	different	format,	you	will
have	to	convert	it	into	a	cursor,	usually	a	MatrixCursor.

The	query()	method

To	make	a	query	to	the	content	provider:

1.	 Create	an	SQL-style	query.
2.	 Use	a	content	resolver	to	interact	with	the	content	provider	to	execute	the	query	and	return	a	Cursor.
3.	 Process	the	results	in	the	Cursor.

The	query	method	has	the	following	signature:

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,String[]	selectionArgs,	String	sortOrder){}

The	arguments	to	this	method	represent	the	parts	of	a	SQL	query.	Even	if	you	are	using	another	kind	of	backend,	you	must
still	accept	a	query	in	this	style	and	handle	the	arguments	appropriately.

uri
The	complete	content	URI	queried.	This	cannot	be	null.	You	get	the	information	for	the	correct	URI
from	the	contract.	For	example:
	String	queryUri	=	Contract.CONTENT_URI.toString();	

projection
A	string	array	with	the	names	of	the	columns	to	return	for	each	row.	Setting	this	to	null	returns	all
columns.	For	example:
	String[]	projection	=	new	String[]	{Contract.CONTENT_PATH};		

selection
Indicates	which	rows/records	of	the	objects	you	want	to	access.	This	is	a	WHERE	clause	excluding
the	actual	where.	For	example:
	String	where	=	KEY_WORD	+	"	LIKE	?";	

selectionArgs

Argument	values	for	the	selection	criteria.	If	you	include	?s	in	selection,	they	are	replaced	by	values
from	selectionArgs,	in	the	order	that	they	appear.	IMPORTANT:	It	is	a	best	security	practice	to
always	separate	selection	and	selectionArgs.	For	example:
	String[]whereArgs	=	new	String[]{searchString};	

sortOrder
The	order	in	which	to	sort	the	results.	Formatted	as	an	SQL	ORDER	BY	clause	(excluding	the
ORDER	BY	keyword).	Usually	ASC	or	DESC;	null	requests	the	default	sort	order,	which	could	be
unordered.

And	you	make	a	query	to	to	the	content	provider	like	this:

Cursor	cursor	=	getContentResolver().query(Uri.parse(queryUri),	projection,	selectionClause,	selectionArgs,	sortOrder

);

Note:	The	insert,	delete,	and	update	methods	are	provided	for	convenience	and	clarity.	Technically,	the	query	method	could
handle	all	requests,	including	those	to	insert,	delete,	and	update	data.

Permissions	for	sharing
By	default,	apps	cannot	access	the	data	of	other	apps.	Both	apps	involved	in	sharing	data	need	to	have	permission	to	do
so.

11.1:	Share	Data	Through	Content	Providers

379

https://developer.android.com/reference/android/database/MatrixCursor.html

The	content	provider	must	allow	other	apps	to	access	it's	data.
The	user	must	allow	the	client	app	to	access	the	content	provider.

Permissions	in	from	the	content	provider

To	make	your	content	provider	visible	and	available	to	other	apps,	you	need	to	declare	in	the	AndroidManifest	of	the
provider.

<provider	android:name=".WordListContentProvider"	android:authorities="com.android.example.wordlistsqlwithcontentprov

ider.provider"	android:exported="true"/>

The		android:exported		property	makes	it	explicit	that	other	apps	can	use	this	content	provider.

With	no	permissions	set	explicitly,	any	other	app	can	access	the	content	provider	for	reading	and	writing.	To	limit	and	make
explicit	access	constraints,	set	permissions	inside	the	provider	tag	of	the	content	provider,	where	myapp	is	the	unique
name	of	your	app:

android:readPermission="com.android.example.wordlistsqlwithcontentpfonrovider.PERMISSION"

android:writePermission="com.android.example.wordlistsqlwithcontentprovider.PERMISSION"

The	permission	string	should	be	unique	to	your	content	provider,	so	that	it	only	grants	privileges	for	your	content
provider.
While	the	string	can	be	anything,	using	the	package	name	guarantees	uniqueness.

Permissions	client	app	requests	from	user
In	order	to	access	the	content	provider,	the	client	app	needs	to	declare	permissions	in	the	Android	Manifest	for	that	content
provider.

<uses-permission	android:name	=	"com.android.example.wordlistsqlwithcontentprovider.PERMISSION"/>

Permissions	are	not	covered	in	detail	in	these	concepts.

You	can	learn	more	in	Declaring	Permissions,	System	Permissions,	and	Implementing	Content	Provider	Permissions.

Related	practical
The	related	practicals	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Minimalist	Content	Providers
Add	a	Content	Provider	to	WordListSQL
Sharing	Content	with	Other	Apps

Learn	more
Developer	Documentation:

Content	Provider	Basics
Content	Providers
Uniform	Resource	Identifiers	or	URIs
MIME	type
MatrixCursor	and	Cursors
Working	with	System	Permissions
Implementing	Content	Provider	Permissions

11.1:	Share	Data	Through	Content	Providers

380

https://developer.android.com/training/permissions/declaring.html
https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/guide/topics/providers/content-provider-creating.html#Permissions
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/111a_p_implement_a_minimalist_content_provider.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/111b_p_add_a_content_provider_to_wordlistsql.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/111c_p_sharing_content_with_other_apps.html
https://developer.android.com/guide/topics/providers/content-provider-basics.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Media_type
https://developer.android.com/reference/android/database/MatrixCursor.html
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/training/permissions/index.html
https://developer.android.com/guide/topics/providers/content-provider-creating.html#Permissions

Videos:

Android	Application	Architecture
Android	Application	Architecture:	The	Next	Billion	Users

11.1:	Share	Data	Through	Content	Providers

381

https://www.youtube.com/watch?v=BlkJzgjzL0c
https://www.youtube.com/watch?v=70WqJxymPr8

12.1:	Loaders
Contents:

Loader	architecture
Implementing	a	Cursor	Loader
Related	practical
Learn	more

One	of	the	major	reasons	users	abandon	apps	is	startup	time.	Research	shows	that	if	an	app	or	page	takes	more	than	3
seconds	to	load,	40%	of	users	will	abandon	it.	This	number	varies	somewhat	depending	on	the	study,	but	the	overwhelming
fact	is	that	user	retention	is	strongly	tied	to	app	loading	speed.

App	load	time	is	directly	related	to	whatever	happens	on	the	UI	thread.	The	less	work	your	UI	thread	has	to	do,	the	faster
your	users	will	see	the	page.	There	are	many	factors	that	affect	app	startup	time,	and	you	will	learn	more	about	app
performance	in	a	later	chapter.	One	of	the	big,	obvious	actions	that	affect	performance	is	how	long	it	takes	for	your	app	to
load	its	data.

If	you	know	exactly	where	your	data	is	coming	from,	you	can	potentially	optimize	by	loading	it	yourself.	If	your	data	is
supplied	by	a	content	provider,	you	may	not	know	what	the	backend	is,	and	you	may	not	know	whether	for	any	given	user,
there	will	be	a	small	or	large	amount	of	data.

The	solution	is	to	load	most	or	all	of	your	data	in	the	background,	while	you	show	your	users	relevant	information	that	you
have	stored	locally.	For	example,	you	could	show	them	the	latest	cached	weather	information,	until	you	have	retrieved	new
data	that	shows	the	current	weather	for	the	current	location.

Loaders	are	special	purpose	classes	that	manage	loading	and	reloading	updated	data	asynchronously	in	the	background
using	AsyncTask.

Introduced	in	Android	3.0,	loaders	have	these	characteristics:

They	are	available	to	every	Activity	and	Fragment.
They	provide	asynchronous	loading	of	data	in	the	background.
They	monitor	the	source	of	their	data	and	automatically	deliver	new	results	when	the	content	changes.	For	example,	if
you	are	displaying	data	in	RecyclerView,	when	the	underlying	data	changes,	the	a	CursorLoader	automatically	loads
an	updated	set	of	data,	and	when	finished	with	loading,	can	notify	the	RecyclerView.Adapter	to	update	what	it	displays
to	the	user.
Loaders	automatically	reconnect	to	the	last	loader's	cursor	when	being	recreated	after	a	configuration	change.	Thus,
they	don't	need	to	re-query	their	data	to	display	it	to	you.

In	a	previous	chapter	you	learned	about	AsyncTask	as	a	general	purpose	class	for	doing	work	in	the	background,	and	you
used	an	AsyncTaskLoader	to	keep	data	available	to	your	users	through	configuration	changes.

While	you	can	create	custom	loaders	by	subclassing	the	Loader	class,	the	Android	framework	provides	CursorLoader	that
is	straightforward	to	use	and	applies	to	many	use	cases.	The	CursorLoader	extends	AsyncTaskLoader	to	specifically	work
with	content	providers,	saving	you	a	lot	of	work.

Note	that	it	is	entirely	possible	to	build	custom	loaders.	But	since	the	Android	system	provides	you	with	an	elegant	solution
that	saves	you	a	lot	of	work,	consider	how	you	can	use	it	as	given	before	implementing	your	own	solution	from	scratch.
Before	writing	your	own	loader,	always	consider	whether	you	can	improve	your	app	design	to	work	with	a	CursorLoader.

Loader	architecture
As	shown	in	the	diagram	below,	the	loader	replaces	the	content	resolvers	query	call	to	the	content	provider.	The	diagram
shows	a	simplified	version	of	app	architecture	with	a	loader.	The	loader	performs	querying	for	items	in	the	background.	It
observes	the	data	for	you,	and	if	the	data	changes,	it	automatically	gets	a	new	set	of	data	and	hands	it	to	the	adapter.	

12.1:	Loaders

382

https://developer.android.com/guide/components/loaders.html#summary
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/reference/android/content/Loader.html
https://developer.android.com/reference/android/content/CursorLoader.html

Implementing	a	CursorLoader
An	application	that	uses	loaders	typically	includes	the	following:

An	Activity	or	Fragment.
An	instance	of	the	LoaderManager.
A	CursorLoader	to	load	data	backed	by	a	ContentProvider.	Alternatively,	you	can	implement	your	own	subclass	of
Loader	or	AsyncTaskLoader	to	load	data	from	some	other	source.
An	implementation	for	LoaderManager.LoaderCallbacks.	This	is	where	you	create	new	loaders	and	manage	your
references	to	existing	loaders.
A	way	of	displaying	the	loader's	data,	such	as	a	SimpleCursorAdapter	or	RecyclerViewAdapter.
A	data	source,	such	as	a	ContentProvider	(with	a	CursorLoader).

LoaderManager

The	LoaderManager	is	a	convenience	class	that	manages	all	your	loaders.	You	only	need	one	loader	manager	per	activity
and	typically	get	it	in	onCreate()	of	your	activity,	where	you	also	register	the	loaders	you	are	going	to	use.

The	loader	manager	takes	care	of	registering	an	observer	with	the	content	provider,	which	receives	callbacks	when	data	in
the	content	provider	changes.

The	only	calls	to	the	loader	manager	you	need	to	make	are	for	registering	a	loader,	and	restarting	it	when	you	need	to
discard	all	the	loaded	data.	The	first	parameter	is	the	ID	of	the	loader,	the	second	is	optional	arguments,	and	the	third	is	the
context	where	the	callbacks	are	defined.

getLoaderManager().initLoader(0,	null,	this);

getLoaderManager().restartLoader(0,	null,	this);

12.1:	Loaders

383

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/LoaderManager.html
https://developer.android.com/reference/android/content/CursorLoader.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/content/Loader.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html
https://developer.android.com/reference/android/widget/SimpleCursorAdapter.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/content/CursorLoader.html
https://developer.android.com/reference/android/app/LoaderManager.html

LoaderManager.LoaderCallbacks

In	order	to	interact	with	the	loader,	you	activity	has	to	implement	a	set	of	callbacks	specified	in	the	LoaderCallbacks
interface	of	the	LoaderManager.	When	the	state	of	the	loader	changes,	these	methods	are	called	accordingly.	The	methods
are:

onCreateLoader()—Called	when	a	new	loader	is	created.	Associates	loader	with	the	data	source	it	should	load	and
observe.	(You	don't	have	to	do	anything	additional	for	the	loader	to	observer	your	data	source.)
onLoadFinished()—Called	every	time	the	loader	finishes	loading.	Trigger	an	update	of	user-visible	data	in	this	method.
onLoaderReset()—When	the	loader	is	reset,	you	usually	want	to	invalidate	the	currently	held	data	until	new	data	has
been	loaded.

To	implement	these	callbacks,	you	need	to	implement	LoaderManager	callbacks	for	the	type	of	loader	you	have.	For	a
cursor	loader,	change	the	signature	of	your	activity	as	follows,	then	implement	the	callbacks.

public	class	MainActivity	extends	AppCompatActivity	implements	LoaderManager.LoaderCallbacks<Cursor>

onCreateLoader()

This	callback	instantiates	and	returns	a	new	loader	instance	of	the	desired	type.	Since	the	loader	manager	can	be
managing	multiple	loaders,	an	ID	argument	identifies	the	loader	to	instantiate.	Once	created,	the	loader	will	start	loading
data,	and	it	will	observe	your	date	for	changes,	and	reload	as	necessary.

To	create	CursorLoader,	you	need:

uri—The	URI	for	the	content	to	retrieve	from	the	content	provider.	This	identifies	the	content	provider	and	the	data	to
observe	to	the	loader.
projection—A	list	of	columns	to	return.	Passing	null	will	return	all	columns,	which	is	inefficient.
selection—A	filter	declaring	which	rows	to	return,	formatted	as	a	SQL	WHERE	clause	(excluding	the	WHERE	itself).
Passing	null	will	return	all	rows	for	the	given	URI.
selectionArgs—You	may	include	?s	in	the	selection,	which	will	be	replaced	by	the	values	from	selectionArgs,	in	the
order	that	they	appear	in	the	selection.	The	values	will	be	bound	as	Strings.
sortOrder	—	How	to	order	the	rows,	formatted	as	an	SQL	ORDER	BY	clause	(excluding	the	ORDER	BY	itself).
Passing	null	will	use	the	default	sort	order,	which	may	be	unordered.

@Override

public	Loader<Cursor>	onCreateLoader(int	id,	Bundle	args)	{

				String	queryUri	=	CONTENT_URI.toString();

				String[]	projection	=	new	String[]	{CONTENT_PATH};

				return	new	CursorLoader(this,	Uri.parse(queryUri),

												projection,	null,	null,	null);

}

Notice	how	this	is	very	similar	to	initiating	a	content	resolver:

Cursor	cursor	=	mContext.getContentResolver().query(Uri.parse(uri),

projection,	selectionClause,	selectionArgs,	sortOrder);

onLoadFinished()

Specify	what	happens	with	the	data	once	the	loader	has	acquired	it.	In	this	function	you	should:

Release	the	old	data.
Save	the	new	data	and,	for	example,	make	it	available	to	your	adapter.

The	cursor	loader	monitors	the	data	for	you,	so	you	do	not,	should	not	under	any	circumstances,	do	it	yourself.

The	loader	also	cleans	up	after	itself,	so	there	is	no	need	for	you	to	close	the	cursor.

12.1:	Loaders

384

https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html#onCreateLoader(int,%20android.os.Bundle)
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html#onLoadFinished(android.content.Loader<D>, D)

If	you	are	using	a	RecyclerView	to	display	the	data,	all	you	need	to	do	is	hand	the	data	over	to	the	adapter	whenever
loading	or	reloading	has	finished.

@Override

public	void	onLoadFinished(Loader<Cursor>	loader,	Cursor	cursor)	{

				mAdapter.setData(cursor);

}

onLoaderReset()

Called	when	a	previously	created	loader	is	being	reset,	and	thus	making	its	data	unavailable.	You	should	clean	all
references	to	the	data	at	this	point.	Again,	if	you	are	passing	the	data	to	an	adapter	for	display	in	a	RecyclerView,	the
adapter	does	the	actual	work,	you	just	have	to	instruct	it	to	do	so.

@Override

public	void	onLoaderReset(Loader<Cursor>	loader)	{

				mAdapter.setData(null);

}

Using	the	data	returned	by	the	loader

In	the	practicals,	you	are	using	a	RecyclerView	that	is	driven	by	an	adapter	to	display	the	data	fetched	by	the	loader.	Once
the	loader	receives	the	data,	it	hands	the	data	over	to	the	adapter	through,	for	example,	a	setData()	call.	The	setData()
method	updates	an	instance	variable	in	the	adapter	that	holds	the	most	current	data	set,	and	notifies	the	adapter	that	there
is	fresh	data.

public	void	setData(Cursor	cursor)	{

				mCursor	=	cursor;

				notifyDataSetChanged();

}

The	benefits	of	cursors

You	may	have	noticed	that	the	database	uses	cursors,	the	content	provider	uses	cursors,	and	the	loader	uses	cursors.
Using	the	same	data	type	throughout	your	backend,	and	only	unpacking	it	in	the	adapter,	where	the	contents	of	the	cursor
are	prepared	for	display,	makes	for	a	uniform	backend	with	clean	interfaces.	This	makes	it	easier	to	write	the	code,	easier
to	test,	and	easier	to	debug.	It	also	makes	the	code	simpler	and	shorter.

Complete	app	with	methods

The	following	diagram	shows	the	methods	and	data	types	that	connect	the	different	parts	of	an	application	that	uses:

A	SQLite	database	to	store	data,	and	an	SQLiteOpenHelper	subclass	to	manage	the	database.
A	content	provider	to	make	data	available	to	this	(and	other)	apps.
A	loader	to	load	data	to	display	to	the	user.
A	RecyclerView.Adapter	that	displays	and	updates	data	shown	to	the	user	in	a	RecyclerView.

The	green	colored	boxes	show	the	call	stack	and	journey	of	the	cursor	through	the	layers	of	the	application	for	a	query().
Note	how	inserting,	deleting,	and	updating	are	still	handled	by	the	content	resolver.	However,	the	loader	will	notice	any
changes	made	by	insert,	delete,	or	update	operations,	and	will	reload	the	data	as	necessary.	

12.1:	Loaders

385

https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html#onLoaderReset(android.content.Loader<D>)

Related	practical
The	related	exercises	and	practical	documentation	is	in	Android	Developer	Fundamentals:	Practicals.

Load	and	Display	Data	Fetched	from	a	Content	Provider

Learn	more
Developer	Documentation:

Loaders
Running	a	query	with	a	CursorLoader
CursorLoader	class

12.1:	Loaders

386

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/121_p_load_and_display_data_fetched_from_a_content.html
https://developer.android.com/guide/components/loaders.html
https://developer.android.com/training/load-data-background/setup-loader.html
https://developer.android.com/reference/android/content/CursorLoader.html

13.1:	Permissions,	Performance	and	Security
Contents:

Permissions
Performance
Security	best	practices

You've	now	learned	the	fundamental	core	skills	you	need	to	build	Android	applications.	This	lesson	discusses	best
practices	as	they	relate	to	permissions,	performance	and	security.	This	lesson	does	not	have	a	corresponding	practical.

Permissions
As	you	have	worked	through	the	practicals,	there	were	times	when	your	app	needed	to	get	permission	to	do	something,
including	when	it	needed	to:

connect	to	the	Internet.
use	a	content	provider	in	another	app.

This	section	gives	a	brief	overview	of	permissions	so	that	you	understand	how	and	when	your	app	needs	to	ask	for
permission	before	it	can	perform	and	action.

Ask	permission	if	it	isn't	yours
An	app	is	free	to	use	any	resources	or	data	that	it	creates,	but	must	get	permission	to	use	anything—data,	resources,
hardware,	software—that	does	not	belong	to	it.	For	example,	your	app	must	get	permission	to	read	the	user's	Contacts
data,	or	to	use	the	device's	camera.	It	makes	sense	that	an	app	needs	permission	to	read	a	user's	Contacts,	but	you	might
wonder	why	it	needs	permission	to	use	the	camera.	It	is	because	the	camera	hardware	does	not	belong	to	the	app,	and
your	app	must	always	get	permission	to	use	anything	that	is	not	part	of	the	app	itself.

Requesting	permission
To	request	permission,	add	the		<uses-permission>		attribute	to	the	Android	manifest	file,	along	with	the	name	of	the
requested	permission.	For	example,	to	get	permission	to	use	the	camera:

<uses-permission	android:name="android.permission.CAMERA"/>

Examples	of	permissions

The	Android	framework	provides	more	than	100	predefined	permissions.	These	include	some	obvious	things	including
permission	to	access	or	write	the	user's	personal	data	such	as:

reading	and	writing	a	user's	Contacts	list,	calendar,	or	voicemail
accessing	the	device's	location
accessing	data	from	body	sensors

Some	of	the	other	pre-defined	permissions	are	less	obvious,	such	as	permission	to	collect	battery	statistics,	permission	to
connect	to	the	internet,	and	permission	to	use	hardware	such	as	the	camera	or	fingerprint	hardware.

Android	includes	pre-defined	permissions	for	initiating	a	phone	call	without	requiring	the	user	to	confirm	it,	reading	the	call
log,	capturing	video	output,	rebooting	the	device,	changing	the	date	and	time	zone,	and	many	more.

You	can	see	all	the	system-defined	permissions	at
https://developer.android.com/reference/android/Manifest.permission.html.

13.1:	Permissions,	Performance	and	Security

387

https://developer.android.com/reference/android/Manifest.permission.html

Normal	and	dangerous	permissions

Android	classifies	permissions	as	normal	or	dangerous.

A	normal	permission	is	for	actions	that	do	not	affect	user	privacy	or	user	data,	such	as	connecting	to	the	Internet.

A	dangerous	permission	is	for	an	action	that	does	affect	user	privacy	or	user	data,	such	as	permission	to	write	to	the
user's	voicemail.

Android	automatically	grants	normal	permissions	but	asks	the	user	to	explicitly	grant	dangerous	permissions.

Note:	Apps	must	list	all	permissions	they	use	in	the	Android	manifest,	even	normal	permissions.

How	users	grant	and	revoke	permissions

The	way	users	grant	and	revoke	permissions	depends	on:

the	version	of	Android	that	the	device	is	running.
the	version	of	Android	that	the	app	was	created	for.

Before	Marshmallow	(Android	6.0)

If	an	app	was	created	for	a	version	of	Android	before	6.0	(Marshmallow)	or	it	is	running	on	a	device	that	uses	a	version	of
Android	before	Marshmallow,	Google	Play	asks	the	user	to	grant	required	dangerous	permissions	before	installing	the
app.

13.1:	Permissions,	Performance	and	Security

388

13.1:	Permissions,	Performance	and	Security

389

If	the	user	changes	their	mind	and	wants	to	deny	permissions	to	the	app	after	it	is	installed,	the	only	thing	they	can	do	is	to
uninstall	the	app.

Marshmallow	onwards

If	an	app	was	created	for	a	version	of	Android	from	Android	6.0	(Marshmallow)	onwards	and	it	is	running	on	a	device	that
uses	a	version	of	Android	from	Marshmallow	onwards,	then	Google	Play	does	not	ask	the	user	to	grant	dangerous
permissions	to	the	app	before	installing	it.	Instead,	when	the	user	starts	to	do	something	in	the	app	that	needs	that	level	of
permission,	Android	shows	a	dialog	box	asking	the	user	to	grant	permission.

13.1:	Permissions,	Performance	and	Security

390

13.1:	Permissions,	Performance	and	Security

391

The	user	can	grant	or	revoke	individual	permissions	at	any	time.	They	do	this	by	going	to	the	Settings	App,	choosing	Apps,
and	selecting	the	relevant	app.	In	the	Permissions	section,	they	can	enable	or	disable	any	of	the	permissions	that	the	app
uses.

13.1:	Permissions,	Performance	and	Security

392

13.1:	Permissions,	Performance	and	Security

393

How	differences	in	the	permissions	models	affect	developers

In	the	"old"	permissions	model,	Google	Play	and	the	Android	Framework	worked	together	to	get	permission	from	the	user.
All	that	the	developer	needed	to	do	was	to	make	sure	that	the	app	listed	the	permissions	it	needed	in	the	Android	manifest
file.	The	developer	could	assume	that	if	the	app	was	running,	then	the	user	had	granted	permission.	The	developer	did	not
need	to	write	code	to	check	if	permission	had	been	granted	or	not.

In	the	"new"	permissions	model,	you	can	no	longer	assume	that	if	the	app	is	running,	then	the	user	has	granted	the	needed
permissions.	The	user	could	grant	permission	the	first	time	they	run	the	app,	then,	at	any	time,	change	their	mind	and
revoke	any	or	all	of	the	permissions	that	the	app	needs.

So,	the	app	must	check	whether	it	still	has	permission	every	time	it	does	something	that	requires	permission.	The	Android
SDK	includes	APIs	for	checking	if	permission	has	been	granted.	Here	is	a	code	snippet	that	checks	if	the	app	has
permission	to	write	to	the	user's	calendar:

//	Assume	thisActivity	is	the	current	activity

int	permissionCheck	=	ContextCompat.checkSelfPermission(thisActivity,

			Manifest.permission.WRITE_CALENDAR);

The	Android	framework	for	Android	6.0	(API	level	23)	includes	methods	for	checking	for	and	requesting	permissions.	The
Support	Library	also	includes	methods	for	checking	for	and	requesting	permission.

We	recommend	that	you	use	the	support	library	methods	for	handling	permissions,	because	the	permission	methods	in	the
support	library	take	care	of	checking	which	version	of	Android	your	app	is	running	on,	and	taking	the	appropriate	action.	For
example,	if	the	user's	device	is	running	an	older	version,	then	the		checkSelfPermission()		method	in	the	support	library
checks	if	the	user	already	granted	permission	at	runtime,	but	if	the	device	is	running	Marshmallow	or	later,	then	it	checks	if
permission	is	still	granted,	and	if	not,	shows	the	dialog	to	the	user	to	ask	for	permission.

This	lesson	does	not	go	into	detail	on	how	to	use	the	APIs	for	handling	permissions.	See	Requesting	Permission	at
Runtime	for	details.

Best	practices	for	permissions

When	an	app	asks	for	too	many	permissions,	users	get	suspicious.	Make	sure	your	app	only	requests	permission	for
features	and	tasks	it	really	needs,	and	make	sure	the	user	understands	why	they	are	needed.

Wherever	possible,	use	an	Intent	instead	of	asking	for	permission	to	do	it	yourself.	For	example,	if	your	app	needs	to	use
the	camera,	send	an	Intent	to	the	camera	app,	and	that	way	the	camera	app	will	do	all	your	work	for	you	and	your	app	does
not	need	to	get	permission	to	use	the	camera	(and	it	will	be	much	easier	for	you	to	write	the	code	than	if	you	accessed	the
camera	APIs	directly).

Learn	more	about	Permissions	in	Android
Pre-defined	permissions
Best	practices	for	permissions
Blog	entry	about	runtime	permissions

Performance
You	have	made	your	app	as	useful,	interesting,	and	beautiful	as	possible.	However,	to	make	it	stand	out	from	the	crowd,
you	should	also	make	it	as	small,	fast,	and	efficient	as	possible.	Consider	the	impact	your	app	might	have	on	the	device's
battery,	memory,	and	disc	space.	And	most	of	all,	be	considerate	of	users'	data-plans.	The	following	recommendations	are
only	the	tip	of	the	iceberg	where	performance	is	concerned,	but	they	give	you	an	idea	on	where	to	start.

Important:	Maximizing	performance	is	all	about	balance,	finding	and	making	the	best	trade-offs	between	app	complexity,
functionality,	and	visuals,	to	give	users	the	best	possible	experience	with	your	app.

13.1:	Permissions,	Performance	and	Security

394

https://developer.android.com/topic/libraries/support-library/index.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/training/permissions/best-practices.html
http://android-developers.blogspot.com/2015/08/building-better-apps-with-runtime.html

Keep	long-running	tasks	off	the	main	thread

This	course	has	already	talked	about	moving	work	off	the	main	thread	into	the	background	to	help	keep	the	UI	smooth	and
responsive	for	the	user.	The	hardware	that	renders	the	display	to	the	screen	typically	updates	the	screen	every	16
milliseconds,	so	if	the	main	thread	is	doing	work	that	takes	longer	than	16	milliseconds,	the	app	might	skip	frames,	stutter
or	hang,	all	of	which	are	likely	to	annoy	your	users.

You	can	check	how	well	your	app	does	at	rendering	screens	within	the	16	millisecond	limit	by	using	the	Profile	GPU
Rendering	tool	on	your	Android	device.

1.	 Go	to	Settings	>	Developer	options.
2.	 Scroll	down	to	the	Monitoring	section.
3.	 Select	Profile	GPU	rendering.
4.	 Choose	On	screen	as	bars	in	the	dialog	box.

Immediately	you	will	start	seeing	colored	bars	on	your	screen.

Note:	You	can	run	the	tool	on	an	emulator,	just	to	try	it,	but	the	data	is	not	indicative	of	how	your	app	would	perform	on	a
real	device.

Open	your	own	app,	and	watch	the	colored	bars.

13.1:	Permissions,	Performance	and	Security

395

One	bar	represents	one	screen	rendered.	If	a	bar	goes	above	the	green	line,	it	took	more	than	16	ms	to	render.	The	colors
in	the	bar	represent	the	different	stages	in	rendering	the	screen.

Read	about	how	to	interpret	the	results	and	what	the	different	stages	mean	at	Analyzing	with	Profile	GPU	Rendering.	If	you
spend	time	using	the	Profile	GPU	rendering	tool	on	your	app,	it	will	help	you	identify	which	parts	of	the	UI	interaction	are
slower	than	might	be	expected,	and	then	you	can	take	action	to	improve	the	speed	of	your	app's	UI.

For	example,	if	the	green	Input	portion	of	the	bar	is	large,	your	app	spends	a	lot	of	time	handling	input	events,	that	is,
executing	code	called	as	a	result	of	input	event	callbacks.	To	fix	this,	consider	when	and	how	you	request	user	input,	and
whether	you	can	handle	it	more	efficiently.

Simplify	your	UI
This	course	has	talked	about	how	to	make	your	apps	interesting	and	visually	compelling	using	material	design	guidelines,
and	it's	taught	you	how	to	use	the	Layout	Editor	to	create	your	layouts.	You've	learned	that	you	can	create	nested
hierarchies	of	layouts.	You've	learned	how	to	use	drawables	as	background	elements	for	your	views.	These	elements	allow
you	to	create	complex	nested	layouts	with	diverse	backgrounds	and	views	overlapping	each	other	throughout	your	app.

However,	your	layouts	will	draw	faster	and	use	less	power	and	battery	if	you	spend	time	designing	them	in	the	most
efficient	way.

13.1:	Permissions,	Performance	and	Security

396

https://developer.android.com/topic/performance/rendering/profile-gpu.html

Try	to	avoid:

Deeply	nested	layouts—If	your	layouts	are	narrow	and	deep,	the	Android	system	has	to	perform	more	passes	to	lay
out	all	the	views	than	if	your	view	hierarchy	is	wide	and	shallow.	Consider	how	you	can	combine,	flatten,	or	even
eliminate	views.
Overlapping	views—this	results	in	"overdraw"	where	the	app	wastes	time	drawing	the	same	pixel	multiple	times,	and
only	the	final	rendition	is	visible	to	the	user.	Consider	how	you	can	size	and	organize	your	views	so	that	every	pixel	is
only	drawn	once	or	twice.

Simplify	layouts

Make	sure	your	layouts	include	only	the	views	and	functionality	your	app	needs.	Simple	layouts	are	generally	more	visually
appealing	to	users,	and	they	draw	faster,	giving	you	a	double	win.

Flatten	your	layouts	as	much	possible,	which	means	reducing	the	number	of	nested	levels	in	your	app's	view	hierarchy.	For
example,	if	your	layout	contains	a	LinearLayout	inside	a	LinearLayout	inside	a	LinearLayout,	you	may	be	able	to	arrange	all
the	views	inside	a	single	ConstraintLayout.

See	the	guide	Optimizing	your	UI	for	more	information	on	improving	the	performance	of	your	app's	UI.

Minimize	overlapping	views

Imagine	that	you	are	painting	the	door	of	your	house	in	red.	They	you	paint	it	again	in	green.	Then	you	paint	it	again	in
blue.	In	the	end,	the	only	color	you	see	is	blue,	but	you	wasted	a	lot	of	energy	painting	the	door	multiple	times.

Each	layout	in	your	app	is	like	the	door.	Every	time	your	app	"paints"	(draws)	a	pixel,	it	takes	time.	If	your	layout	has
overlapping	views,	then	your	app	is	using	time	and	resources	drawing	pixels	that	it	then	draws	over	again.	Try	to	reduce	the
amount	of	times	your	app	overdraws	pixels,	by	reducing	overlapping	views.	Be	careful	about	using	drawable	backgrounds
on	overlapping	views	and	only	use	them	when	they	are	visible.

See	the	guide	Reducing	Overdraw	for	more	information.

Monitor	the	performance	of	your	running	app
Android	Studio	has	tools	to	measure	your	app's	memory	usage,	GPU,	CPU,	and	Network	performance.	App	crashes	are
often	related	to	memory	leaks,	which	is	when	your	app	allocates	memory	and	does	not	release	it.	If	your	app	leaks	memory,
or	uses	more	memory	than	the	devices	makes	available,	it	will	eventually	use	up	all	the	available	memory	on	the	device.
Use	the	Memory	Monitor	tool	that	comes	with	Android	Studio	to	observe	how	your	app	uses	memory.

1.	 In	Android	Studio,	at	the	bottom	of	the	window,	click	the	Android	Monitor	tab.	By	default	this	opens	on	logcat.
2.	 Click	the	Monitors	tab	next	to	logcat.	Scroll	or	make	the	window	larger	to	see	all	four	monitors:	Memory,	CPU,

Networking,	and	GPU.
3.	 Run	your	app	and	interact	with	it.	The	monitors	update	to	reflect	the	app's	use	of	resources.	Note	that	to	get	accurate

data,	you	should	do	this	on	a	physical,	not	virtual,	device.	

13.1:	Permissions,	Performance	and	Security

397

https://developer.android.com/studio/profile/optimize-ui.html
https://developer.android.com/topic/performance/rendering/overdraw.html

The	monitors	are:

Memory	monitor—Reports	how	your	app	allocates	memory	and	helps	you	to	visualize	the	memory	your	app	uses.
CPU	monitor—Lets	you	monitor	the	central	processing	unit	(CPU)	usage	of	your	app.	It	displays	CPU	usage	in	real
time.
GPU	monitor—Gives	a	visual	representation	of	how	long	the	graphical	processing	unit	(GPU)	takes	to	render	frames
to	the	screen.
Network	Monitor—Shows	when	your	application	is	making	network	requests.	It	lets	you	see	how	and	when	your	app
transfers	data,	and	optimize	the	underlying	code	appropriately.

Read	the	Android	Monitor	page	to	learn	more	about	using	the	monitors.

Learn	more	about	improving	your	app's	performance

You,	Your	App,	and	Performance
Exceed	the	Android	speed	limit

Overdraw:

Only	draw	what	you	see
Reducing	Overdraw

Tools:

Performance	profiling	tools
Optimizing	your	UI
Analyzing	with	profile	GPU	rendering
Android	Monitor

Security	best	practices

13.1:	Permissions,	Performance	and	Security

398

http://developer.android.com/tools/help/android-monitor.html
https://medium.com/google-developers/you-your-app-and-android-performance-56485edc2a81#.x4ra8opa5
https://medium.com/google-developers/exceed-the-android-speed-limit-b73a0692abc1#.a0yr8vzh9
https://medium.com/google-developers/draw-what-you-see-and-clip-the-e11-out-of-the-rest-6df58c47873e#.afuww73f9
https://developer.android.com/topic/performance/rendering/overdraw.html
https://developer.android.com/studio/profile/index.html
https://developer.android.com/studio/profile/optimize-ui.html
https://developer.android.com/topic/performance/rendering/profile-gpu.html
http://developer.android.com/tools/help/android-monitor.html

Much	of	the	burden	of	building	secure	apps	is	handled	for	you	by	the	Android	Framework.	For	example,	apps	are	isolated
from	each	other	so	they	can't	access	each	other	or	use	each	other's	data	without	permission.

However,	as	an	app	developer,	you	have	the	responsibility	to	make	sure	your	app	treats	the	user's	data	safely	and	with
integrity.	Your	app	is	also	responsible	for	keeping	its	own	data	safe.

Handling	user	data

This	lesson	has	already	discussed	how	Android	uses	permissions	to	make	sure	apps	cannot	access	the	user's	personal
data	without	their	permission.	But	even	if	the	user	gives	your	app	permission	to	access	their	private	data,	do	not	do	so
unless	absolutely	necessary.	And	if	you	do,	treat	the	data	with	integrity	and	respect.	For	example,	just	because	the	user
gives	your	app	permission	to	update	their	calendar	does	not	mean	you	have	permission	to	delete	all	their	calendar	entries.

Android	apps	operate	on	a	foundation	of	implied	trust.	The	users	trust	that	the	apps	will	use	their	data	in	a	way	that	makes
sense	within	the	context	of	the	app.

If	your	app	is	a	messaging	app,	it's	likely	that	the	user	will	grant	it	permission	to	read	their	contacts.	That	does	not	mean
your	app	is	allowed	to	read	all	the	user's	contacts	and	send	everyone	a	spam	message.

Your	app	must	only	read	and	write	the	user's	data	when	absolutely	necessary,	and	only	in	a	way	that	the	user	would	expect
the	app	to	do	so.	Once	your	app	has	read	any	private	data,	you	must	keep	it	safe	and	prevent	any	leakage.	Do	not	share
private	data	with	other	apps.

Depending	on	how	your	app	uses	user	data,	you	might	also	need	to	provide	a	written	statement	regarding	privacy	practices
when	you	publish	your	app	in	the	Google	Play	store.

Be	aware	that	any	data	that	the	user	acquires,	downloads,	or	buys	in	your	app	belongs	to	them,	and	your	app	must	store	it
in	a	way	that	the	user	still	has	access	to	it	even	if	they	uninstall	your	app.

Important:	Logs	are	a	shared	resource	across	all	apps.	Any	app	that	has	the	READ_LOGS	permission	can	read	all	the
logs.	Do	not	write	any	of	the	user's	private	data	to	the	logs.

Public	Wi-Fi
Many	people	use	mobile	apps	over	public	Wi-Fi.	When	did	you	last	access	the	Internet	from	your	mobile	phone	over	the
public	Wi-Fi	at	a	coffee	shop,	an	airport,	or	a	railway	station?

Design	your	app	to	protect	your	user's	data	when	they	are	connected	on	public	Wi-Fi.	Use		https		rather	than		http	
whenever	possible	to	connect	to	websites.	Encrypt	any	user	data	that	gets	transmitted,	even	data	that	might	seem	innocent
like	their	name.

For	transmitting	sensitive	data,	implement	authenticated,	encrypted	socket-level	communication	using	the	SSLSocket
class.	This	class	adds	a	layer	of	security	protections	over	the	underlying	network	transport	protocol.	Those	protections
include	protection	against	modifications	of	messages	by	a	wiretapper,	enhanced	authentication	with	the	server,	and
increased	privacy	protection.

Validating	user	input
If	your	app	accepts	input	(and	almost	every	app	does!)	you	need	to	make	sure	that	the	input	does	not	bring	anything
harmful	in	with	it.

If	your	app	uses	native	code,	reads	data	from	files,	receives	data	over	the	network,	or	receives	data	from	any	external
source,	it	has	the	potential	to	introduce	a	security	issue.	The	most	common	problems	are	buffer	overflows,	dangling
pointers,	and	off-by-one	errors.	Android	provides	a	number	of	technologies	that	reduce	the	exploitability	of	these	errors,	but
they	do	not	solve	the	underlying	problem.	You	can	prevent	these	vulnerabilities	by	carefully	handling	pointers	and
managing	buffers.

13.1:	Permissions,	Performance	and	Security

399

https://developer.android.com/reference/javax/net/ssl/SSLSocket.html
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Dangling_pointer#Security_holes_involving_dangling_pointers
http://en.wikipedia.org/wiki/Off-by-one_error

If	your	app	allows	users	to	enter	queries	that	are	submitted	to	an	SQL	database	or	a	content	provider,	you	must	guard
against	SQL	injection.	This	is	a	technique	where	malicious	users	can	inject	SQL	commands	into	a	SQL	statement	by
entering	data	in	a	field.	Injected	SQL	commands	can	alter	SQL	statement	and	compromise	the	security	of	the	application
and	the	database.

Read	about	using	parameterized	queries	to	defend	against	SQL	injections	in	the	content	providers	section	of	the	Security
Tips	guide.

Another	thing	you	can	do	to	limit	the	risk	of	SQL	injection	is	to	use	or	grant	either	the	READ_ONLY	or	WRITE_ONLY
permission	for	content	providers.

WebViews
One	of	the	View	classes	in	Android	is	WebView,	which	displays	a	web	page.

This	course	has	not	discussed	WebView,	but	you	might	have	found	it	and	tried	it	out	for	yourself.	We	are	mentioning	it	here
because	even	though	it	is	very	cool	to	quickly	display	a	web	page	in	your	app,	WebView	does	come	with	security	concerns.

Because	WebView	consumes	web	content	that	can	include	HTML	and	JavaScript,	it	can	introduce	common	web	security
issues	such	as	cross-site-scripting	(JavaScript	injection).

By	default,	a	WebView	provides	no	browser-like	widgets,	does	not	enable	JavaScript,	and	ignores	web	page	errors.	If	your
goal	is	only	to	display	some	HTML	as	a	part	of	your	UI,	this	is	acceptable	as	the	user	won't	need	to	interact	with	the	web
page	beyond	reading	it,	and	the	web	page	won't	need	to	interact	with	the	user.	If	you	want	a	fully	functional	web	browser,
invoke	the	Browser	application	with	a	URL	Intent	rather	than	showing	the	page	with	a	WebView.	This	is	also	a	more	secure
option	than	extending	the	WebView	class	and	enabling	features	such	JavaScript.

Security,	like	performance,	is	a	large	topic	that	cannot	be	covered	in	a	few	paragraphs.	It	is	your	responsibility	to	treat	user
data	with	care	and	keep	it	safe	at	all	times.	Use	the	resources	below	to	learn	as	much	as	you	can	about	treating	your	users
and	their	data	with	the	highest	regard.

Learn	more	about	security	best	practices

Security	tips
Input	validation
Security	tips	for	content	providers

13.1:	Permissions,	Performance	and	Security

400

https://developer.android.com/training/articles/security-tips.html#ContentProviders
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/reference/android/webkit/WebView.html
http://en.wikipedia.org/wiki/Cross_site_scripting
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/training/articles/security-tips.html#InputValidation
https://developer.android.com/training/articles/security-tips.html#ContentProviders

14.1:	Firebase	and	AdMob
Contents:

Firebase
Get	started	with	Firebase
Firebase	Analytics
Firebase	Notifications
Firebase	Realtime	Database
Firebase	Test	Lab
Firebase	Demo
More	Firebase	features
Learn	more	about	Firebase

Make	money	from	your	app
AdMob

Create	an	AdMob	account
Implement	AdMob	in	your	app
Learn	more	about	AdMob

This	lesson	covers	three	topics:

Firebase,	a	set	of	tools	for	mobile	and	web	app	developers
Making	money	from	your	Android	app
Running	ads	using	AdMob

Firebase
Firebase	is	a	set	of	tools	for	app	developers,	but	not	just	for	Android	app	developers.	It	is	for	iOS	app	developers	and	web
app	developers	too.	However,	since	this	is	a	course	about	Android	development,	this	lesson	only	talks	about	how	to	use
Firebase	with	Android	apps.

As	an	Android	developer,	you	use	Android	Studio	to	build	your	app,	but	you	can	use	Firebase	to	add	features	to	your	app,
get	a	wider	audience	for	your	app,	test	your	app,	earn	revenue	from	your	app,	and	get	analytics	on	the	usage	of	your	app.

This	chapter	does	not	discuss	everything	about	Firebase,	but	it	introduces	Firebase,	helps	you	get	started	using	it,	and
highlights	important	features	that	you	might	want	to	use.

Get	started	with	Firebase
To	use	Firebase,	go	to	the	Firebase	console	at	https://console.firebase.google.com/.	You	will	need	to	have	a	Google
account.

14.1:	Firebase	and	AdMob

401

https://console.firebase.google.com/

The	first	time	you	go	to	the	Firebase	you	see	a	welcome	screen	that	includes	a	button	to	create	a	new	project.	

To	use	Firebase	features	with	your	Android	app,	first	create	a	Firebase	project	and	then	add	your	Android	app	to	the
Firebase	project.

A	project	is	a	container	for	your	apps	across	platforms:	Android,	iOS,	and	web.	You	can	name	your	project	anything	you
want;	it	does	not	have	to	match	the	name	of	any	apps.

1.	 In	the	Firebase	console,	click	the	CREATE	NEW	PROJECT	button.
2.	 Enter	your	Firebase	project	name	in	the	dialog	box	that	appears	then	click	Create	Project.	

3.	 The	Firebase	console	opens.	Look	in	the	menu	bar	for	the	name	of	your	project.	

14.1:	Firebase	and	AdMob

402

Add	your	Android	app	to	your	Firebase	project

The	next	step	is	to	associate	your	Android	application	with	your	Firebase	project.	First	though,	get	the	information	you	will
need.	To	connect	Firebase	to	your	Android	app,	you	need	to	know	the	package	name	used	in	your	app.	It's	best	to	have
your	app	open	in	Android	Studio	before	you	start	the	process.

To	connect	your	Firebase	project	and	your	Android	app	to	each	other:

1.	 In	Android	Studio,	open	your	Android	app.
2.	 Make	sure	you	have	the	latest	Google	Play	services	installed.

Tools	>	Android	SDK	Manager	>	SDK	Tools	tab	>	Google	Play	services.

3.	 Note	the	package	of	the	source	code	in	your	Android	app.

4.	 In	the	Firebase	console,	Click	Add	Firebase	to	your	Android	app.
5.	 Enter	the	package	name	of	your	app	in	In	the	dialog	box	that	appears.	

6.	 Click	Add	App.	Firebase	downloads	a	file	called		google_services.json		to	your	computer.	Save	it	in	a	convenient
location,	such	as	your	Desktop.	(If	you	have	any	trouble,	click	Project	Settings	(the	cogwheel	next	to	Overview)	and
download	the	file	manually.)

7.	 Find	the	downloaded	file	on	your	computer.
8.	 Copy	or	move	that	file	into	the	app	folder	of	your	project	in	Android	Studio.	The	wizard	in	Firebase	shows	where	to	put

the	file	in	Android	Studio.
9.	 In	the	Firebase	console,	click	Continue.	The	screen	now	shows	the	instructions	for	updating	your	build.gradle	files.
10.	 In	Android	Studio,	update	the	project-level	build.gradle	(Project:	app)	file	with	the	latest	version	of	the	google-services

package	(where	x.x.x	are	the	numbers	for	the	latest	version.	See	the	Android	setup	guide	for	the	latest	version.)

14.1:	Firebase	and	AdMob

403

https://firebase.google.com/docs/android/setup#add_the_sdk

buildscript	{

		dependencies	{

				//	Add	this	line

				classpath	'com.google.gms:google-services:x.x.x'

		}

}

11.	 In	Android	Studio,	in	the	app-level	build.gradle	(Module:	app)	file,	at	the	bottom,	apply	the	google-services	plugin.

	//	Add	to	the	bottom	of	the	file	apply	plugin:	'com.google.gms.google-services'	

12.	 In	Android	Studio,	sync	the	Gradle	files.

13.	 In	the	Firebase	console,	click	Finish.

Your	Android	app	and	your	Firebase	project	are	now	connected	to	each	other.

Firebase	Analytics
You	can	enable	Firebase	Analytics	in	your	app	to	see	data	about	how	and	where	your	app	is	used.	You	will	be	able	to	see
data	such	as	how	many	people	use	your	app	over	time	and	where	in	the	world	they	use	it.

All	the	data	that	your	app	sends	to	Firebase	is	anonymized,	so	you	never	see	the	actual	identity	of	who	used	your	app.

To	get	usage	data	about	your	app,	add	the		firebase-core		library	to	your	app	as	follows:

1.	 Make	sure	you	have	added	your	app	to	your	Firebase	project.
2.	 In	Android	Studio,	make	sure	you	have	the	latest	Google	Play	services	installed.

Tools	>	Android	SDK	Manager	>	SDK	Tools	tab	>	Google	Play	services

3.	 Add	the	dependency	for	firebase-core	to	your	app-level	build.gradle	(Module:	app)	file:

	compile	'com.google.firebase:firebase-core:x.x.x'	

After	you	add	the		firebase-core		library	to	your	app,	it	will	automatically	send	usage	data	when	people	use	your	app.
Without	having	to	add	any	more	code,	you	will	get	a	default	set	of	data	about	how,	when,	and	where	people	use	your	app.
Not	only	do	you	not	have	to	add	any	code	to	generate	default	usage	data,	you	don't	even	have	to	publish	your	app	or	do
anything	else	to	it	other	than	use	it.

When	someone	does	something	in	your	app,	such	as	click	a	button	or	go	to	another	activity,	the	app	will	log	an	Analytics
event.	This	means	that	the	app	will	package	up	the	data	about	the	event	that	happened,	and	put	it	in	the	queue	to	send	to
Firebase.

Check	to	see	if	the	analytics	event	occurs

Android	sends	Analytics	events	in	batches	to	minimize	battery	and	network	usage,	as	explained	in	this	blog	post.	Generally
speaking,	Analytics	events	are	sent	approximately	every	hour	or	so	to	the	server,	but	it	also	takes	additional	time	for	the
Analytics	servers	to	process	the	data	and	make	it	available	to	reports	in	the	Firebase	console.

While	you	are	developing	and	testing	your	app,	you	don't	have	to	wait	for	the	data	to	show	up	in	the	Analytics	dashboard	to
check	that	your	app	is	logging	Analytics	events.	As	you	use	your	app,	make	sure	your	logcat	is	displaying	"Debug"
messages.	Look	in	the	log	for	statements	such	as:

Logging	event	(FE):	_e,	Bundle[{_o=auto,	_et=5388,	_sc=SecondActivity,	...}]

These	kinds	of	log	messages	indicate	that	an	Analytics	event	has	been	generated.	In	this	example,	an	Analytics	event	was
generated	when	the		SecondActivity		started.

View	reports	in	the	Firebase	Analytics	dashboard

14.1:	Firebase	and	AdMob

404

https://firebase.googleblog.com/2016/11/how-long-does-it-take-for-my-firebase-analytics-data-to-show-up.html

To	see	the	Analytics	reports,	open	the	Firebase	Console	and	select	Analytics.	The	dashboard	opens	showing	reports	for
your	app	for	the	last	30	days.

Note:	The	end	date	is	always	Yesterday	by	default.	To	see	the	usage	statistics	including	Today,	change	the	default	date
range	to	Today.	Look	for	the	calendar	icon	towards	the	top	right	of	the	screen	and	change	the	date	range.

Default	Analytics

The	analytics	information	you	get	by	default	includes:

Number	of	users
Devices	your	users	used
Location	of	the	users
Demographics	such	as	gender
App	version
User	engagement
And	more

For	a	full	list	of	the	available	reports	see	the	Firebase	help	for	the	Dashboard.

Here's	an	example	of	a	report	showing	the	number	of	people	who	used	an	app	in	the	past	30	days:	

14.1:	Firebase	and	AdMob

405

https://support.google.com/firebase/answer/6317517?hl=en&ref_topic=6317489

And	here's	an	example	of	a	report	showing	the	users'	locations:	

Other	kinds	of	Analytics	data

To	see	usage	data	for	your	app	beyond	the	default	reports,	you	need	to	add	code	to	your	app	to	send	an	"Analytics	event"
at	the	appropriate	point	in	your	app.

In	your	app's	main	activity,	define	a	variable	for	the	instance	of		FirebaseAnalytics		for	your	app.

	FirebaseAnalytics	mFirebaseAnalytics;	

In	the	main	activity's		onCreate()	,	get	the	instance	of		FirebaseAnalytics	.

	mFirebaseAnalytics	=	FirebaseAnalytics.getInstance(this);	

To	send	usage	data	in	your	app,	call		logEvent()		on	the		FireBaseAnalytics		instance.

You	can	log	Analytics	events	either	for	pre-defined	events	or	for	your	own	custom	events.	The	predefined	events	include:

ADD_PAYMENT_INFO
ADD_TO_CART
LEVEL_UP
LOGIN
SIGN_UP

and	many	more.

For	example,	to	send	an	Analytics	event	when	a	user	goes	to	the	next	level	in	your	app,	you	could	use	code	such	as:

14.1:	Firebase	and	AdMob

406

https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.html#logEvent(java.lang.String,%20android.os.Bundle)

mFirebaseAnalytics.logEvent(LEVEL_UP,	null);

The	second	argument	is	a		Bundle		that	contains	information	describing	the	event.

You	can	explore	the	predefined	events	and	parameters	in	the		FirebaseAnalytics.Event		and		FirebaseAnalytics.Param	
reference	documentation.

Read	more	about	logging	Analytics	events	in	the	Logging	Analytics	Events	guide.

Firebase	Notifications
You	learned	in	a	previous	lesson	how	to	enable	your	app	to	send	notifications	to	the	user.	Using	the	Firebase	console,	you
can	send	notifications	to	all	your	users,	or	to	a	subset	of	your	users.

Type	the	message	in	the	Notifications	section	of	the	console,	select	the	the	audience	segment	to	send	the	message	to,	and
then	send	the	message.

To	send	the	message	to	all	users	of	your	app,	set	the	User	Segment	to	App,	and	select	the	package	for	your	app.	

14.1:	Firebase	and	AdMob

407

https://developer.android.com/reference/android/os/Bundle.html
https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.Event
https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.Param
https://firebase.google.com/docs/analytics/android/events

Behind	the	scenes,	Firebase	uses	Firebase	Cloud	Messaging	to	send	the	notification	to	the	targeted	devices	where	the

selected	app	is	installed.	

Best	practices	for	sending	notifications

The	same	kind	of	best	practices	are	true	for	sending	notifications	from	the	Firebase	console	as	they	are	for	sending
notifications	from	the	app.	Be	considerate	of	the	user.	Send	only	notifications	that	are	important.	Do	not	irritate	your	users
by	sending	too	many	notifications	or	notifications	with	unhelpful	or	annoying	content.

Firebase	Realtime	Database

14.1:	Firebase	and	AdMob

408

https://firebase.google.com/docs/cloud-messaging/

In	this	course,	you	learned	the	different	ways	your	app	can	save	data.	You	used		SharedPreferences		to	save	data	as	key-
value	pairs,	and	you	saved	data	in	Android's	built-in	SQLite	database.	You	created	a	content	provider	to	provide	an
interface	to	access	stored	data,	regardless	of	how	it	is	stored,	and	also	to	share	data	with	other	apps.

But	how	do	you	share	data	across	multiple	clients	such	as	different	devices	and	apps,	including	Android,	iOS	and	web
apps,	and	allow	them	to	update	the	data	and	all	stay	synchronized	with	the	data	in	realtime?	For	this,	you	need	a	central
cloud-based	data	repository.

Firebase	offers	a	database	that	provides	cloud-based	data	storage,	allowing	clients	to	all	stay	in	sync	as	the	data	changes.
If	an	app	goes	offline,	the	data	remains	available.	When	the	app	reconnects	to	the	Internet,	the	data	is	synced	to	the	latest
state	of	the	database.

For	more	information,	see	the	Firebase	database	guide	at:

firebase.google.com/docs/database/

How	data	is	stored
The	Firebase	Realtime	Database	is	a	NoSQL	database.	Data	is	stored	as	JSON	objects.	(You	used	JSON	in	the	lesson
about	connecting	to	the	Internet.)

You	can	think	of	the	database	as	a	cloud-hosted	JSON	tree.	Unlike	a	SQL	database,	there	are	no	tables	or	records.	When
you	add	data	to	the	JSON	tree,	it	becomes	a	node	in	the	existing	JSON	structure	with	an	associated	key.

Here's	an	example	of	a	JSON	tree	of	data	storing	data	about	books	and	movies:

{

		"books":	{

				"book	one":	{

						"title":	"How	to	develop	Android	apps",

						"author":	"Jane	Developer"

				},

				"book	two":	{							

						"title":	"How	to	use	Firebase",

						"author":	"Adam	Writer"

						},

				"book	three":	{

						"title":	"How	to	search	Google",

						"author":	"Ava	Searcher"

				}

		},

		"movies":	{

				"movie	one":	{

						"title":	"Saving	the	world",

						"main	role":	"Super	man"

				},

				"movie	two":	{							

						"title":	"Saving	the	moon",

						"main	role":	"Bat	girl"

						},

				"movie	three":	{

						"title":	"Saving	Mars",

						"main	role":	"Martian	dog"

				}

			}

}

14.1:	Firebase	and	AdMob

409

https://firebase.google.com/docs/database/

Here's	an	example	of	how	this	data	appears	in	the	Firebase	Database	console:	

When	you	write	code	to	access	data	in	the	database,	you	retrieve	data	items	by	their	location.	The	location	of	the	data	is
constructed	by	traversing	the	tree.

For	example,	the	location	to:

books	node	is	twoactivitiesfirebasedemo/database/data/books
book	one	is	twoactivitiesfirebasedemo/database/data/books/book%20one
author	of	book	one	is	twoactivitiesfirebasedemo/database/data/books/book%20one/author

Get	and	set	data

You	can	use	the	Firebase	console	to	view	and	update	data	in	the	database.	Your	app	can	use	API	calls	to	get	and	set	data
in	the	database.

Viewing	and	writing	data	in	the	Firebase	console

14.1:	Firebase	and	AdMob

410

In	the	Firebase	console,	you	can	add,	edit	and	delete	data.	

You	can	also	import	and	export	data	in	the	console.	To	import	data,	you	must	format	the	data	as	JSON	and	save	it	in	a	file
with	a		.json		extension.

Be	aware	that	if	you	import	a	JSON	file,	it	overwrites	any	data	nodes	that	are	defined	in	the	file	that	already	exist	in	the
database.

Reading	and	writing	data	in	your	app
To	use	a	Firebase	database	in	your	app,	add	the		firebase-database		library	to	your	app,	and	then	use	methods	on
	DatabaseReference	:

1.	 Make	sure	you	have	added	your	app	to	your	Firebase	project.
2.	 Add	the	dependency	for	firebase-database	to	your	app-level	build.gradle	(Module:app)	file	(where	x	is	the	latest

version,	see	the	Android	Firebase	Database	developer	guide	for	the	latest	version):		compile
'com.google.firebase:firebase-database:x.x.x'	

3.	 To	access	the	data	from	your	Android	app,	use	the	methods	in	the		DatabaseReference		class.

The	easiest	way	to	construct	and	handle	the	data	is	to	create	a	Java	object	that	represents	that	data.	For	example,	you
could	create	the		Book		class:

public	class	Book	{

				public	String	title;

				public	String	author;

				public	Book()	{

								//	Default	constructor	is	required

				}

				public	Book(String	title,	String	author)	{

								this.title	=	title;

								this.author	=	author;

				}

}

To	access	the	data	from	your	Android	app,	use	the	methods	in	the		DatabaseReference		class	to	access,	create,	and	update
data.	The		DatabaseReference		class	represents	a	reference	to	a	data	item.

For	example:

	child()		accesses	a	child	node.
	setValue()		sets	the	data	at	a	node,	and	creates	the	node	if	it	does	not	already	exist.

To	create	a	new	data	node:

1.	 Get	the	reference	to	the	parent	of	the	new	data	node
2.	 Call		child()		to	create	a	reference	to	the	new	child	node.
3.	 Use		setValue()		to	set	the	value	of	the	new	node.

14.1:	Firebase	and	AdMob

411

https://firebase.google.com/docs/database/android/start/

For	example,	suppose	that	you	want	to	add	a	new	book	to	the	database	with	the	following	details:

bookId	=	"book	4"
title	=	"How	to	edit	data"
author	=	"Ann	Editor"

To	add	this	new	book	to	the	example	data	set	shown	previously,	create	an	instance	of		DatabaseReference	,	and	initialize	it	in
the	main	activity's		onCreate()		method:

private	DatabaseReference	mDbBooksRef;

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

		//	Create	a	new	reference	to	the	"books"	node

		mDbBooksRef	=	FirebaseDatabase.getInstance().getReference("books");

		//	rest	of	onCreate()	…

}

Define	a	method	to	create	a	new		Book		object	and	add	it	to	the	database	under	the	"books"	node:

private	void	addNewBook(String	bookId,	String	title,	String	author)	{

				//	Create	a	new	Book	object	with	the	relevant	details

				Book	book	=	new	Book(title,	author);

				//	mDbBooksRef	is	a	reference	to	the	"books"	node

				//	Create	a	child	node	whose	key	is	bookId

				//	and	set	its	value	to	the	new	book

				mDbBooksRef.child(bookId).setValue(book);

}

Invoke	the		addBook()		method	as	follows	to	create	the	new	data	item	in	the	database:

addNewBook("book	four",	"How	to	edit	data",	"Ann	Editor");

To	learn	more	about	reading	and	writing	Firebase	data	in	your	app,	see:

Set	up	Firebase	Realtime	Database	for	Android
Read	and	Write	Data	on	Android.

Access	control

Firebase	provides	a	set	of	rules	to	determine	who	is	allowed	to	view	and	update	data	in	a	Firebase	database.	Learn	how	to
create	the	rules	in	Get	Started	with	Database	rules.

Firebase	Test	Lab
The	Firebase	Test	Lab	lets	you	test	your	app	on	a	range	of	different	devices	hosted	in	Google's	data	centers	and	get
reports	on	the	results.

The	Test	Lab	creates	tests	called	robo	tests	for	you,	and	you	can	also	create	and	run	your	own	tests.	To	run	your	app	in
the	Test	Lab:

1.	 In	Android	Studio:	Build	>	Build	APK.
2.	 Locate	the	APK	in	your	computer's	file	system.	It	will	likely	be	in		app/build/apk		or		app/build/outputs/apk		in	the

directory	where	the	Android	Studio	project	is	saved.

On	Mac,	you	can	click	Reveal	in	Finder	to	see	the	location	of	the	APK.

3.	 In	the	Firebase	console	select	Test	Lab	>	Run	a	Test.

4.	 Upload	your	APK.
5.	 From	the	matrix	of	devices	and	API	levels	that	appears,	choose	the	combination	of	devices	to	run	your	app	on.	

14.1:	Firebase	and	AdMob

412

https://firebase.google.com/docs/database/android/start/
https://firebase.google.com/docs/database/android/read-and-write
https://firebase.google.com/docs/database/security/quickstart

6.	 Choose	Start	N	Tests	at	the	bottom	right	of	the	device	matrix,	where	N	is	the	valid	combination	of	devices	and	API
levels	you	have	chosen.

7.	 View	the	report	when	the	tests	have	finished.	

14.1:	Firebase	and	AdMob

413

As	well	as	running	the	auto-generated	"robo"	tests,	you	can	also	run	your	own	instrumentation	tests,	which	are	tests	you
have	written	specifically	to	test	your	app.	For	example,	you	can	run	Espresso	tests	in	the	Test	Lab.

When	you	write	instrumentation	tests,	you	create	a	second	APK	to	upload	to	Test	Lab	along	with	the	APK	for	your	app.

Learn	more	at	Firebase	Test	Lab	for	Android	Overview.

Firebase	Demo
There	is	a	public	Firebase	demo	project	that	you	can	use	to	explore	the	Firebase	console.	The	Firebase	demo	project	is	a
standard	Firebase	project	with	fully	functioning	analytics,	crash	reporting,	test	lab,	and	more.	Anyone	with	a	Google
account	can	access	it.	It's	a	great	way	to	look	at	real	app	data	and	explore	the	Firebase	feature	set.

You	cannot	send	notifications	from	the	demo	project,	because	you	do	not	have	owner	access	to	it.	Nor	can	you	see	and
modify	data	in	the	database.

The	data	in	the	demo	project	is	real	data	from	an	app	called	Flood-It.	You	can	download	this	app	and	use	it	to	contribute	to
the	data	yourself.	Flood-It	is	a	simple	game,	where	you	see	how	quickly	you	can	cover	the	board	with	a	single	color.	Flood-
It	was	created	by	Lab	Pixies,	which	is	now	a	Google	company.

Go	ahead	and	download	and	play	Flood-It	if	you	want,	but	don't	forget	to	come	back	and	keep	learning!	Get	the	Flood-It
app	from	Google	Play	here.

Learn	how	to	access	the	Firebase	demo	in	the	Firebase	help	center.

More	Firebase	features
Firebase	has	many	more	tools	to	help	you	develop	your	app	and	help	it	reach	your	audiences.	However,	our	goal	in
discussing	Firebase	in	this	course	is	to	introduce	you	to	Firebase	and	make	you	aware	of	its	features,	and	to	inspire	you	to
learn	more	about	Firebase	on	your	own.

To	get	started	learning	on	your	own	about	Firebase:

Do	the	"Firebase	in	a	Weekend"	online	course	www.udacity.com/course/ud0352
Work	through	the	Firebase	codelab	codelabs.developers.google.com/codelabs/firebase-android

Learn	more	about	Firebase

14.1:	Firebase	and	AdMob

414

https://firebase.google.com/docs/test-lab/overview
https://play.google.com/store/apps/details?id=com.labpixies.flood
https://support.google.com/firebase/answer/7157552
https://www.udacity.com/course/ud0352
https://codelabs.developers.google.com/codelabs/firebase-android

Get	started	with	Firebase

Firebase	console
Add	Firebase	to	your	Android	project
Firebase	public	demo
Firebase	in	a	Weekend	online	course
Firebase	codelab

Firebase	Analytics

Add	Firebase	Analytics	to	your	Android	app
Key	metrics	available	in	the	Firebase	Analytics	dashboard
Predefined	events:	FirebaseAnalytics.Event
Predefined	parameters:	FirebaseAnalytics.Param

Firebase	Notifications

Firebase	notifications

Firebase	Database

Firebase	database
Set	up	Firebase	Realtime	Database	for	Android
Read	and	Write	Data	on	Android

Firebase	Test	Lab

Firebase	Test	Lab	for	Android
Use	Firebase	Test	Lab	for	Android	from	the	Firebase	Console

Make	money	from	your	app
It's	exciting	to	build	an	app	and	see	it	run.	But	how	do	you	make	money	from	your	app?

First,	you	need	to	create	an	app	that	works	well,	is	fast	enough,	doesn't	crash,	and	is	useful	or	entertaining.	It	must	be
compelling	so	users	will	not	only	want	to	install	and	use	it,	but	will	want	to	keep	on	using	it.

Assuming	your	app	is	robust	and	provides	features	that	are	useful,	entertaining,	or	interesting,	there	are	various	ways	for
you	to	make	money	from	your	app.

Ways	to	make	money

The	monetization	models	are:

Premium	model—users	pay	to	download	app.
Freemium	model:

downloading	the	app	is	free.
users	pay	for	upgrades	or	in-app	purchases.

Subscriptions—users	pay	a	recurring	fee	for	the	app.
Ads—the	app	is	free	but	it	displays	ads.

Premium	apps

Users	pay	up	front	to	download	premium	apps.	For	an	app	that	provides	desirable	functionality	to	a	small,	highly	targeted
audience,	attaching	a	price	to	your	app	can	provide	a	source	of	revenue.	Be	aware	that	some	users	will	refuse	to	download
an	app	if	they	have	to	pay	for	it,	or	if	they	cannot	try	it	first	free	of	charge.	If	users	can	find	other	similar	apps	that	are
available	free	or	at	a	lower	cost,	they	might	prefer	to	download	and	try	those	other	apps.

14.1:	Firebase	and	AdMob

415

https://console.firebase.google.com/
https://firebase.google.com/docs/android/setup
https://support.google.com/firebase/answer/7157552
http://www.udacity.com/course/ud0352
http://codelabs.developers.google.com/codelabs/firebase-android
https://firebase.google.com/docs/analytics/android/start/
https://support.google.com/firebase/answer/6317517?hl=en&ref_topic=6317489
https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.Event
https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.Param
https://firebase.google.com/docs/notifications/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/android/start/
https://firebase.google.com/docs/database/android/read-and-write
https://firebase.google.com/docs/test-lab/
https://firebase.google.com/docs/test-lab/web-ui

Freemium	apps

A	"freemium"	app	is	a	compromise	between	a	completely	free	app	and	one	that	charges	a	fee	to	install.	The	app	is
available	for	installation	free	of	charge	either	with	limited	functionality	or	for	a	limited	duration.	Your	goal	for	a	freemium	app
should	be	to	convince	users	of	the	value	of	your	app,	so	that	after	they	have	used	it	for	a	while,	they	are	willing	to	pay	to
keep	using	it	or	to	upgrade	for	more	features.	Have	you	ever	downloaded	a	free	app	and	then	paid	for	the	upgraded
functionality?	What	was	it	you	liked	about	the	app	that	made	you	want	to	pay	for	it?

Another	way	to	make	money	from	a	freemium	app	is	to	provide	in-app	purchases.	For	a	game,	your	app	might	offer	new
content	levels	in	the	game,	or	new	items	to	make	the	game	more	fun.	Think	about	the	mobile	games	you	have	played.
Which	ones	have	offered	in-app	purchases	and	what	for?	Have	you	ever	made	in-app	purchases	on	a	mobile	app?

Subscriptions
With	the	subscription	model,	users	pay	a	recurring	fee	to	use	the	app.	This	is	very	similar	to	the	premium	model,	except
that	users	pay	at	regular	billing	cycles	rather	than	once	at	installation	time.	You	can	set	up	subscriptions	so	that	users	pay
either	monthly	or	annually.	If	you	provide	your	app	on	a	subscription	basis,	consider	offering	regular	content	updates	or
some	other	service	that	warrants	a	recurring	fee.

If	you	decide	to	offer	your	app	on	the	subscription	model,	it's	a	good	idea	to	let	users	have	a	free	trial.	Many	users	will
refuse	to	install	an	app	that	makes	them	pay	before	they	have	even	tried	it	to	see	if	it	suits	their	needs.

Ads

One	common	monetization	strategy	is	to	provide	your	app	free	of	charge	but	run	ads	in	it.	The	user	can	use	your	app	as
much	as	they	like,	but	the	app	will	show	them	ads	occasionally.

If	your	app	displays	ads,	always	be	considerate	of	the	user.	If	your	app	shows	so	many	ads	that	it	annoys	the	user,	they
might	stop	using	it	or	uninstall	it.

Adding	ads	to	your	app	is	straightforward.	The	best	way	to	incorporate	ads	into	your	app	is	to	use	AdMob.

AdMob
Google	provides	tools	for	advertisers	to	create	ads	and	define	the	targeting	criteria	for	their	ads.	For	an	example	of
targeting	criteria,	an	ad	might	be	targeted	to	be	shown	to	people	in	a	specific	location.	Google	has	a	huge	inventory	of	ads
to	display	on	both	websites	and	mobile	apps.	You	can	display	ads	from	this	inventory	in	your	app	by	using	AdMob	(which
stands	for	Ads	on	Mobile).

To	display	an	ad	in	your	app,	add	an		AdView		in	the	layout	of	an	activity	and	write	a	small	amount	of	boilerplate	code	to	load
the	ad.	When	a	user	runs	your	app	and	goes	to	that	activity,	an	ad	appears	in	the		AdView	.	You	do	not	need	to	worry	about
finding	an	ad	to	display	because	Google	handles	that	for	you.

How	ads	help	you	make	money

Google	pays	you	when	users	click	ads	in	your	app.	The	exact	amount	you	get	paid	depends	on	the	ads	that	get	shown,	and
how	much	the	advertisers	were	willing	to	pay	for	their	ads.	The	total	amount	paid	by	the	advertisers	is	distributed	between
Google	and	the	publisher	of	the	website	or	app	where	the	ad	appears.

Don't	click	on	ads	in	your	own	app
Google	has	policies	that	prevent	website	publishers	and	app	publishers	from	clicking	ads	in	their	own	websites	and	apps.
The	advertisers	pay	when	people	click	their	ads,	so	it	would	not	be	fair	for	you	to	display	an	ad	in	your	app,	then	click	the
ad,	and	cause	the	advertiser	to	pay	you	for	clicking	the	ad	in	your	own	app.

Read	more	about	AdMob	policies	in	the	AdMob	help	center.

14.1:	Firebase	and	AdMob

416

https://support.google.com/admob/answer/2753860?hl=en&ref_topic=2745287

Create	an	AdMob	account
Before	you	can	experiment	with	running	ads	in	your	app,	you	need	to	enable	AdMob	for	that	app.	To	enable	AdMob	use
these	steps:

1.	 In	the	Firebase	console,	select	AdMob	in	the	left	hand	navigation,	then	select	Sign	Up	For	AdMob.

You	will	be	re-directed	to	the	AdMob	console.

1.	 Follow	the	sign	up	wizard	to	create	your	AdMob	account	and	add	your	app	to	AdMob.

To	display	an	ad	in	your	app,	you	need	your	AdMob	app	ID	and	an	ad	unit	ID.	You	can	get	both	of	these	in	the	AdMob
console.

Implement	AdMob	in	your	app
To	display	an	ad	in	your	app:

1.	 Make	sure	you	have	added	your	app	to	your	Firebase	project.
2.	 Add	the	dependency	for	firebase-ads	to	your	app-level	build.gradle	(Module:	app)	file:	(where	x	is	the	latest	version)

	compile	'com.google.firebase:firebase-ads:x.x.x'	

3.	 Add	an		AdView		to	the	layout	for	the	activity	that	will	display	the	ad.
4.	 Initialize	AdMob	ads	at	app	launch,	by	calling		MobileAds.initialize()		in	the		onCreate()		method	of	your	main	activity.
5.	 Update	the		onCreate()		of	that	activity	to	load	the	ad	into	the		AdView	.

Get	ready	to	run	test	ads
While	you	are	developing	and	testing	your	app,	you	can	display	and	test	ads	to	make	sure	your	app	is	setup	correctly	to
display	ads.	When	testing	ads	you	need:

Your	device	ID	(IMEI)	for	running	test	ads.	To	get	the	device	ID	either:
Go	to	Settings	>	About	phone	>	status>	IMEI.
Dial	*#06#.
Your	AdMob	app	ID.	Get	this	in	the	AdMob	console.
An	ad	unit	ID.	Get	this	in	the	AdMob	console.

Add	the	AdView	to	display	the	ad

In	the	activity's	layout	file	where	you	want	the	ad	to	appear,	add	an		AdView	:

14.1:	Firebase	and	AdMob

417

https://support.google.com/admob/answer/6232340
https://support.google.com/admob/answer/3052638

<com.google.android.gms.ads.AdView

				android:id="@+id/adView"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_marginLeft="16dp"

				android:layout_centerHorizontal="true"

				ads:adSize="BANNER"

				ads:adUnitId="@string/banner_ad_unit_id">

</com.google.android.gms.ads.AdView>

You	also	need	to	add	the		ads		namespace	to	the	root	view	of	the	layout:

<RootLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:ads="http://schemas.android.com/apk/res-auto"

				…>

Here's	an	example	of	a	layout	with	an		AdView		in	the	Layout	Editor:	

14.1:	Firebase	and	AdMob

418

When	the	app	runs,	the	AdView	is	replaced	by	an	ad.	

Initialize	MobileAds

The		MobileAds		class	provides	methods	for	initializing	AdMob	ads	in	your	app.	Call		MobileAds.initialize()		in	the
	onCreate()		method	of	your	main	activity,	passing	the	context	and	your	app	ID	(which	you	get	from	the	AdMob	console).

//	Initialize	AdMob

MobileAds.initialize(this,	"ca-app-pub-1234");

Write	the	code	to	load	the	ad

In	the		onCreate()		method	of	the	activity	that	displays	the	ad,	write	the	code	to	load	the	ad.

While	you	are	developing	and	testing	your	app	you	can	display	ads	in	test	mode	by	specifying	specific	test	devices.	To
show	ads	on	your	own	device,	you	need	to	device	ID	(IMEI),	which	you	can	get	from	Settings	>	About	phone	>	Status>
IMEI	or	by	dialling	*#06#.

To	load	an	ad:

1.	 Get	the		AdView		where	the	ad	will	appear.
2.	 Create	an		AdRequest		to	request	the	ad.
3.	 Call		loadAd()		on	the		AdView		to	load	the	ad	into	the		AdView	.

Here's	the	code	to	write	in		onCreate()		in	the	activity:

14.1:	Firebase	and	AdMob

419

https://developers.google.com/android/reference/com/google/android/gms/ads/MobileAds
https://developers.google.com/android/reference/com/google/android/gms/ads/AdView
https://developers.google.com/android/reference/com/google/android/gms/ads/AdRequest

//	Get	the	AdView

AdView	mAdView	=	(AdView)	findViewById(R.id.adView);

//	Create	an	AdRequest

AdRequest	adRequest	=	new	AdRequest.Builder()

		//	allow	emulators	to	show	ads

		.addTestDevice(AdRequest.DEVICE_ID_EMULATOR)

		//	allow	your	device	to	show	ads		

		.addTestDevice("1234")	//	your	device	id

		.build();

//	Load	the	ad	into	the	AdView

mAdView.loadAd(adRequest);

When	you	are	ready	to	run	ads	for	real,	you'll	need	to	make	some	changes	to	how	you	create	the	AdRequest	object.	See
Get	Started	with	Android	AdMob	for	more	information	on	what	you	need	to	do.

Learn	more	about	AdMob
Earn	from	your	Android	apps

Earn	revenue	from	AdMob	ads
Get	started	with	AdMob	in	Android	Studio
Set	up	Android	for	AdMob
Sign	up	for	AdMob
Access	AdMob	console	after	you	have	signed	up
You	can	also	access	the	AdMob	console	from	the	AdMob	link	in	the	Firebase	console)
AdMob	help	center
AdMob	policies

Anti-spam	(don't	click	on	ads	in	your	own	apps)	policies
AdMob	glossary

14.1:	Firebase	and	AdMob

420

https://developers.google.com/android/reference/com/google/android/gms/ads/AdRequest
https://developers.google.com/android/reference/com/google/android/gms/ads/AdRequest
https://firebase.google.com/docs/admob/android/quick-start
https://firebase.google.com/docs/admob/android/quick-start
https://developer.android.com/distribute/monetize/index.html
https://developer.android.com/distribute/monetize/ads.html
https://firebase.google.com/docs/admob/android/quick-start
https://firebase.google.com/docs/admob/android/quick-start
https://apps.admob.com/signup/
https://apps.admob.com/
https://support.google.com/admob/
https://support.google.com/admob/answer/6128543?hl=en&ref_topic=2745287&visit_id=1-636170895899075670-284016801&rd=1
https://support.google.com/admob/answer/2753860?hl=en&ref_topic=2745287
https://support.google.com/admob/topic/2998357?hl=en&ref_topic=2740022

15.1:	Publish!
Contents:

Prepare	your	app	for	release
What	is	an	APK?
Test	your	app	thoroughly
Make	sure	your	app	has	the	right	filters
Add	a	launcher	icon	to	your	app
Add	an	Application	ID
Specify	API	Level	targets	and	version	number
Reduce	your	app's	size
Clean	up	your	project	folders
Disable	logging	and	debugging
Reduce	the	size	of	your	app's	image
Generate	signed	APK	for	release
Publish	your	app!
Create	an	account	in	the	Google	Play	Developer	Console
Run	pre-launch	reports
Review	criteria	for	publishing
Submit	your	app	for	publishing
Final	summary
Learn	more

In	previous	practicals	you	learned	how	to	build	and	test	your	app,	and	now	it's	time	to	learn	how	publish	it.	So,	what	do	you
have	to	do	to	publish	your	app?	This	chapter	covers	the	the	high-level	steps	for	publishing	your	Android	app	to	the	Google
Play	store,	and	it	introduces	the	Google	Play	developer	console,	where	you	can	upload	your	app	to	Google	Play.	It	does
not	teach	you	everything	there	is	to	know	about	the	Google	Play	developer	console.	We	hope,	though,	that	after	you	read
this	chapter	you	will	be	excited	to	upload	your	app	and	investigate	all	the	different	features	of	the	console.

This	chapter	has	two	main	sections:

Prepare	your	app	for	release	discusses	the	tasks	you	need	to	do	to	make	sure	your	app	is	really	ready	to	publish.
Publish!	discusses	alpha	and	beta	testing,	and	how	to	use	the	Google	Play	developer	console	to	publish	your	app.

Prepare	your	app	for	release
The	main	goal	when	preparing	your	app	for	release	is	to	make	sure	it	is	really	ready.	Android	users	expect	high-quality
apps	that	look	great	and	work	well.	There	will	always	be	more	features	that	you	want	to	add	to	your	app,	or	more	features
that	your	users	ask	for.	There's	a	big	difference,	however,	between	a	great	app	that	could	be	made	even	better	versus	an
app	that	breaks	often,	provides	an	incomplete	experience,	has	navigation	paths	that	go	nowhere,	or	does	not	have	a	way	to
get	to	the	important	parts	of	the	app.

Think	about	your	own	favorite	apps.	What	do	you	like	about	them?

Think	about	apps	that	you	have	uninstalled	or	hardly	ever	use.	What	didn't	you	like	about	them?	Think	about	apps	that	you
were	excited	to	get	but	then	were	disappointed	when	you	started	using	them.	What	caused	that	disappointment	for	you?

The	high	level	tasks	for	publishing	your	app	to	the	Google	Play	store	are:

1.	 Prepare	the	app	for	release.
2.	 Generate	the	signed	APK.
3.	 Upload	the	APK	to	the	Google	Play	developer	console.
4.	 Run	alpha	and	beta	tests.

15.1:	Publish!

421

5.	 Publish	to	the	world!

This	chapter	takes	a	high-level	look	at	each	of	these	tasks.

What	is	an	APK?
An	APK	is	a	zip	file	that	contains	everything	your	app	needs	to	run	on	a	user's	device.	It	always	has	the	.apk	extension.
You	need	an	APK	to	publish	your	app	in	the	Google	Play	store.

You	can	use	Android	Studio	to	create	the	APK	for	your	app.	Before	you	generate	the	APK	for	your	app,	you	need	to	do
everything	you	can	to	make	your	app	successful,	including:

Test	your	app	thoroughly.
Make	sure	your	app	has	the	correct	filters.
Add	an	icon.
Choose	an	Application	ID.
Specify	API	levels	targets.
Clean	up	your	app.

When	your	app	is	completely	ready,	then	you	can	generate	a	signed	APK	to	upload	to	the	Google	Play	store.

Take	a	look	at	the	launch	checklist	in	the	Android	developer	documentation.

Test	your	app	thoroughly
As	you	develop	your	app,	test	it	on	your	own	Android	device	and	in	Android	Studio's	emulator.	Make	sure	you	test	the	app
for	different	screen	sizes	and	orientations.	Also	check	that	the	app	works	properly	on	older	devices.

Share	your	app	with	your	developer	friends.	Make	a	zip	file	and	send	it	to	other	developers.	Then	they	can	load	your	app
into	Android	Studio	and	run	it.

You	know	how	your	app	is	supposed	to	work,	after	all;	you	designed	and	built	it.	You	know	the	"right	way"	to	use	your	app.
However,	users	have	a	really	creative	way	of	trying	to	use	apps	that	you	never	would	have	believed,	let	alone	considered.
They	might	try	to	use	your	app	or	its	features	in	ways	you	had	not	thought	of,	or	might	test	it	in	ways	you	had	not	tested	it.
Encourage	your	testers	to	try	out	your	app	in	different	ways,	to	try	to	achieve	different	goals,	and	to	take	different	paths
navigating	through	the	activities.	This	will	help	catch	errors,	inconsistencies,	or	functionality	failures	that	you	were	not	able
to	find,	because	you	are	too	familiar	with	how	the	app	is	supposed	to	work.

Make	sure	you	run	formal	tests	on	your	app,	including	unit	and	Espresso	tests.	These	tests	should	cover	both	the	core
features	of	your	app,	and	the	main	integration	points	where	your	app	calls	out	to	another	API	or	retrieves	data	from	the
web.	These	are	points	that	are	critical	to	your	app,	and	they	are	the	areas	of	code	likely	to	break.

Use	Firebase	Test	Lab	to	run	your	app	on	a	range	of	real	devices	in	Google's	data	centers.	This	way	you	can	verify	both
the	functionality	and	the	compatibility	of	your	app	across	many	different	kinds	and	versions	of	devices	before	to	releasing
your	app	to	a	broader	audience.

Read	about	Firebase	Test	Lab	for	Android	at	firebase.google.com/docs/test-lab/.

Make	sure	your	app	has	the	right	filters
When	a	user	searches	or	browses	for	apps	in	the	Google	Play	store,	the	results	include	only	apps	that	are	compatible	with
the	user's	device.	For	example,	if	a	person	uses	a	phone	that	has	a	small	screen,	Google	Play's	search	results	do	not
include	apps	that	require	a	large	TV-sized	screen.

Make	sure	your	app	specifies	the	appropriate	requirements	to	ensure	that	it	reaches	the	right	audience.	For	example,	if
your	app	requires	biometric	hardware	for	reading	fingerprints,	then	add	the	requirement	in	the	Android	manifest.

15.1:	Publish!

422

https://developer.android.com/distribute/tools/launch-checklist.html
https://firebase.google.com/docs/test-lab/

<uses-feature	android:name="android.hardware.fingerprint"/>

However,	specifying	that	your	app	needs	a	fingerprint	reader	limits	the	audience	for	your	app	to	people	who	have	devices
with	a	fingerprint	reader.	You	should	think	carefully	before	adding	restrictions	to	the	manifest	that	might	limit	who	can	see
and	download	your	app.

If	your	app	really	does	need	a	particular	attribute	to	be	present	on	the	user's	device,	then	make	sure	to	include	that
restriction	in	the	manifest,	to	ensure	that	everyone	who	can	find	and	download	your	app	can	actually	run	it.	People	are	very
likely	to	give	your	app	a	bad	review	if	they	install	it	only	to	find	that	it	does	not	run	on	their	device.

Hardware	filters

You	can	specify	that	your	app	uses	hardware	features,	such	as:

light	sensor

<uses-feature	android:name="android.hardware.sensor.light"	/>

gamepad

<uses-feature	android:name="android.hardware.gamepad"	/>

step	counter

<uses-feature	android:name="android.hardware.sensor.stepcounter"	/>

and	many	more

See	the	full	list	at	developer.android.com/guide/topics/manifest/uses-feature-element.html.

Software	filters

You	can	specify	that	your	app	requires	the	device	to	have	software	features	such	as:

a	particular	shared	library	is	installed.	For	example:

<uses-library	android:name="com.google.android.maps"/>

uses	a	minimum	Android	API	level.	For	example:

<uses-sdk	android:minSdkVersion="19">

Countries

In	the	process	of	uploading	your	app	to	Google	Play,	you	can	select	the	countries	where	your	app	will	be	available.	If	you
specify	this,	then	only	users	in	those	countries	will	be	able	to	find	and	download	your	app.

Add	a	launcher	icon	to	your	app
A	launcher	icon	is	a	graphic	that	represents	your	application.	The	launcher	icon	for	your	app	appears	in	the	Google	Play
store	listing.	When	users	search	the	Google	Play	store,	the	icon	for	your	app	appears	in	the	search	results.

When	a	user	has	installed	the	app,	the	launcher	icon	appears	on	the	device	in	various	places	including:

On	the	home	screen
In	Manage	Applications

15.1:	Publish!

423

https://developer.android.com/guide/topics/manifest/uses-feature-element.html#hw-features

In	My	Downloads	

Read	the	Launcher	Icons	design	guide	for	advice	on	designing	your	launcher	app	to	encourage	users	to	use	your	app.

Add	an	Application	ID
The	Application	ID	uniquely	identifies	an	application.	Make	sure	your	app	has	an	Application	ID	that	will	always	be	unique
from	all	other	applications	that	a	user	might	install	on	their	device.

When	you	create	a	project	for	an	Android	application,	Android	Studio	automatically	gives	your	project	an	Application	ID.
The	value	is	initially	the	same	as	the	package	for	the	app.	The	Application	ID	is	defined	in	the	build.gradle	file.	For	example:

defaultConfig	{

			applicationId	"com.example.android.materialme"

			minSdkVersion	15

			targetSdkVersion	24

			versionCode	1

			versionName	"1.0"

}

You	can	change	your	app's	Application	ID.	It	does	not	have	to	be	the	same	as	your	app's	package	name.	At	times	as	you
worked	through	the	practicals	in	this	course,	you	created	a	copy	of	an	Android	Studio	project.	After	copying	the	project,	you
changed	the	Application	ID	to	make	sure	that	it	was	unique	when	you	installed	the	app	on	your	device.

When	you	are	getting	ready	to	publish	your	app,	review	the	Application	ID.	The	Application	ID	defines	your	application's
identity.	If	you	change	it,	then	the	app	becomes	a	different	application	and	users	of	the	previous	app	will	not	be	able	to
update	to	the	new	app.

Specify	API	Level	targets	and	version	number
When	you	create	a	project	for	an	Android	app	in	Android	Studio,	you	select	the	minimum	and	target	API	levels	for	your	app.

minSdkVersion	—	minimum	version	of	the	Android	platform	on	which	the	app	will	run.
targetSdkVersion	—	API	level	on	which	the	app	is	designed	to	run.

You	can	set	these	values	in	the	Android	manifest	file,	and	also	in	the	app-level	build.gradle	file.

Note:	The	value	in	build.gradle	overrides	the	value	in	the	manifest	file.	To	prevent	confusion,	we	recommend	you	put	the
values	in	build.gradle,	and	remove	them	from	the	manifest	file,.	Setting	these	attributes	in	build.gradle	also	allows	you	to
specify	different	values	for	different	versions	of	your	app.

15.1:	Publish!

424

https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

When	you	get	your	app	ready	for	release,	review	API	level	targets	and	version	number	values	and	make	sure	they	are
correct.	People	will	not	be	able	to	find	your	app	in	the	Google	Play	store	if	they	are	using	devices	whose	SdkVersion	is
below	the	value	specified	in	your	app.

Here's	an	example	of	setting	these	attribute	values	in	build.gradle:

android	{

		...

		defaultConfig	{

				...

				minSdkVersion	14

				targetSdkVersion	24

}

Note:	The	values	of	minSdkVersion	and	targetSdkVersion	are	the	level	of	the	API,	not	the	version	number	of	the	Android
OS.

Codename Version Release
Date API	Level

Honeycomb 3.0	-
3.2.6 Feb	2011 11	-	13

Ice	Cream
Sandwich

4.0	-
4.0.4 Oct	2011 14	-	15

15.1:	Publish!

425

Jelly	Bean 4.1	-
4.3.1 July	2012 16	-	18

KitKat 4.4	-
4.4.4 Oct	2013 19	-	20

Lollipop 5.0	-
5.1.1 Nov	2014 21	-	22

Marshmallow 6.0	-
6.0.1 Oct	2015 23

15.1:	Publish!

426

Nougat 7.0 Sept	2016 24

Version	number

You	need	to	specify	a	version	number	for	your	app.	As	you	improve	your	app	to	add	new	features,	you	will	need	to	update
the	version	number	each	time	you	release	a	new	version	to	the	Google	Play	store.	Read	more	in	the	Android	Version
guide.

Product	Flavors

You	can	generate	different	"product	flavors"	for	your	app.	A	product	flavor	is	a	customized	version	of	the	application	build.
For	example,	you	could	have	a	demo	version	and	a	production	version.	Here's	an	example	of	how	to	define	product	flavors
in	build.gradle:

android	{

		...

		productFlavors	{

				demo	{

						applicationId	"com.example.myapp.demo"

						versionName	"1.0-demo"

				}

				full	{

						applicationId	"com.example.myapp.full"

						versionName	"1.0-full"

				}

				}

}

Read	more	about	product	flavors	in	the	Build	Configuration	developer	guide.

Reduce	your	app's	size
The	size	of	your	APK	affects:

how	fast	your	app	loads
how	much	memory	it	uses
how	much	power	it	consumes

The	bigger	the	size	of	your	app's	APK,	the	more	likely	it	is	that	some	users	will	not	download	it	because	of	size	limitations
on	their	device	or	connectivity	limitations.	Users	who	have	pay-by-the-byte	plans	will	be	particularly	concerned	about	how
long	an	app	takes	to	download.	If	your	app	takes	up	too	much	space,	users	will	be	more	likely	to	uninstall	it	when	they	need
space	for	other	apps	or	files.

Take	a	look	at	the	apps	on	your	own	Android	phone	now.	Which	apps	take	up	the	most	space?	If	you	ran	out	of	space	on
your	Android	phone,	which	of	the	apps	that	you	downloaded	would	you	uninstall?

15.1:	Publish!

427

https://developer.android.com/studio/publish/versioning.html
https://developer.android.com/studio/build/index.html

15.1:	Publish!

428

There's	no	magic	to	minimizing	the	size	of	your	app's	APK,	most	of	what	you	need	to	do	is	common	sense.	For	example:

Clean	up	your	project	to	remove	unused	resources
Re-use	resources
Minimize	resource	use	from	libraries
Reduce	native	and	Java	code
Reduce	space	needs	for	images

Clean	up	your	project	folders
The	first	step	in	making	your	app	as	small	as	possible	is	to	clean	up	your	project	folders	so	that	when	you	create	the	APK,
Android	Studio	includes	only	the	files	that	your	app	needs.

An	APK	file	consists	of	a	ZIP	archive	that	contains	all	the	files	that	comprise	your	app.	These	files	include	Java	class	files,
resource	files,	and	a	file	containing	compiled	resources.

The	high	level	project	folders	in	your	project	are:

src:	This	folder	contains	the	source	files	for	your	app.	Remove	any	Java	files	that	are	not	used.	Make	sure	the	folder
does	not	contain	any	.jar	files.
lib:	This	folder	contains	third-party	or	private	library	files,	including	prebuilt	shared	and	static	libraries	(such	as	.so
files).	Make	sure	you	remove	any	unused	library	files.
jni:	This	folder	contains	native	source	files	associated	with	the	Android	Native	Developer	Kit,	such	as	.c,	.cpp,	.h,	and
.mk	files.
res:	The	res	sub	folders	contain	the	resources	such	as	layouts,	colors,	strings,	styles	that	your	app	uses.

Note:	While	you	are	developing	your	app,	it	can	be	easy	to	create	additional	resources	that	your	app	ends	up	not	using,	so
be	sure	to	check	for	and	remove	unused	resources.

Disable	logging	and	debugging	and	check	production	URLs
While	you	are	developing	your	app,	you	are	no	doubt	testing	it	carefully,	perhaps	adding	unit	tests,	showing	toasts,	and
writing	logging	statements.	When	you	prepare	your	app	for	release,	you	need	to	remove	all	the	extra	code.

To	disable	logging	and	debugging:

Remove	logging	statements	and	calls	to	show	toasts
Remove	all	Debug	tracing	calls	from	your	source	code	files	such	as	startMethodTracing()	and	stopMethodTracing().
Disable	debugging	in	the	Android	manifest	by	either:
Removing	android:debuggable	attribute	from	tag
Or	setting	android:debuggable	attribute	to	false
Remove	unused	tests

Also,	make	sure	that	if	your	application	accesses	remote	servers	or	services,	it	uses	the	production	URL	or	path	for	the
server	or	service	and	not	a	test	URL	or	path.	Likewise,	many	companies	with	public	APIs	have	test	permissions	and
production	level	permissions.	Make	sure	that	your	security	or	passwords	for	accessing	these	servers	are	production	level
as	well.

Reduce	the	size	of	your	app's	images
Reducing	the	size	of	the	images	in	your	app	can	go	a	long	way	to	reducing	the	size	of	the	APK	file.

First,	make	sure	your	app	does	not	contain	any	image	resources	it	does	not	use.
For	each	static	image	your	app	uses,	you	need	to	create	separate	versions	of	that	image	for	all	screen	sizes	that	your
app	might	run	on.	However,	in	some	cases,	you	can	use	Drawable	objects,	VectorDrawables,	and	9-patch	files	instead.

15.1:	Publish!

429

If	your	app	uses	static	images,	be	sure	to	crunch	PNG	files,	and	compress	both	PNG	and	JPEG	files	to	minimize	their
size.	You	can	use	Google	to	search	for	crunching,	crushing,	and	compressing	tools	for	images.
Consider	using	WebP	format	for	images.	Android	supports	WebP	from	Android	4.0+.

Read	more	about	how	to	reduce	the	size	of	your	app	in	the	Reduce	APK	size	guide.

Note:	Drawable	objects	are	defined	in	XML.	Android	draws	them	when	the	app	needs	to	display	them,	which	means	your
app	does	not	need	to	store	images	for	them.	However,	because	Android	generates	them	as	needed,	it	can	take	longer	for
the	images	to	appear	on	screen,	so	it's	best	to	use	Drawable	objects	for	smaller	images	such	as	icons	and	logos.	Drawable
objects	do	not	support	the	same	complexity	and	detail	that	you	can	get	with	bitmaps.
In	Android	5.0	(API	Level	21)	and	above,	you	can	define	vector	drawables,	which	are	images	that	are	defined	by	a	path.
Vector	drawables	scale	without	losing	definition.	Most	vector	drawables	use	SVG	files,	which	are	plain	text	files,	or
compressed	binary	files	that	include	two-dimensional	coordinates	for	how	the	image	is	drawn	on	the	screen.	Because	SVG
files	are	text,	they	use	less	space	than	most	other	image	files.	Also,	you	only	need	one	file	for	a	vector	image	instead	of	a
file	for	each	screen	density.

Consider	the	use	case	for	your	images,	and	use	Drawable	objects	and	9-patch	files	wherever	it	makes	sense.	See	the
Drawable,	Styles	and	Themes	lesson	in	this	course	for	more	information.

Generate	the	signed	APK	for	release
When	your	app	is	ready	to	upload	to	Google	Play,	you	must	generate	and	sign	the	APK	for	your	app.	Android	Studio	has
tools	for	generating	your	APK	and	signing	it	with	a	digital	certificate.

When	Android	Studio	signs	the	app,	it	creates	a	public	certificate	and	a	private	key.	It	attaches	the	public	certificate	to	the
APK.	You	must	securely	store	the	private	key	in	a	keystore

The	public-key	certificate	serves	as	as	a	"fingerprint"	that	uniquely	associates	the	APK	to	you	and	your	corresponding
private	key.	This	helps	Android	ensure	that	any	future	updates	to	your	APK	are	authentic	and	come	from	you,	the	original
author.

For	information	about	digital	certificates,	storing	your	private	key,	and	generating	the	digitally-signed	APK,	see	the	guide
Sign	Your	App.

Publish	your	app!
When	you've	tested	your	app,	cleaned	it	up,	reduced	its	size,	and	generated	the	APK,	you	are	ready	to	publish	it	to	Google
Play.

After	you	upload	your	app	to	Google	Play,	you	can	run	alpha	and	beta	tests	before	releasing	it	to	the	public.	Running	alpha
and	beta	tests	lets	you	share	your	app	with	real	users,	and	get	feedback	from	them.	This	feedback	does	not	appear	as
reviews	in	Google	Play.

Run	alpha	tests	while	you	are	developing	your	app.	Use	alpha	tests	for	early	experimental	versions	of	your	app	that	might
contain	incomplete	or	unstable	functionality.	Running	alpha	tests	is	also	a	good	way	to	share	your	app	with	friends	and
family.

Run	beta	tests	with	limited	number	of	real	users,	to	do	final	testing	before	your	app	goes	public.

Once	your	app	is	public,	users	can	give	reviews.	So,	make	sure	you	test	it	thoroughly	before	putting	it	out	on	Google	Play
for	anyone	to	download.

For	more	information	on	alpha	and	beta	tests	see:

Developer	guide:	developer.android.com/distribute/engage/beta.html
Help	center:	support.google.com/googleplay/android-developer/answer/3131213

15.1:	Publish!

430

https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/reference/android/graphics/drawable/VectorDrawable.html
https://developer.android.com/reference/android/graphics/drawable/VectorDrawable.html
https://developer.android.com/reference/android/graphics/NinePatch.html

Create	an	account	in	the	Google	Play	Developer	Console
Whether	you	want	to	run	alpha	and	beta	tests,	or	publish	your	app	to	the	public	on	Google	Play,	you	need	to	upload	your
APK	in	the	Google	Play	developer	console.

Go	to	the	console	at	play.google.com/apps/publish/.

To	begin,	get	a	Google	Play	developer	account.	You	will	need	to	pay	for	the	account.	The	high-level	steps	are:

1.	 Go	to	play.google.com/apps/publish/
2.	 Accept	the	agreement.
3.	 Pay	the	registration	fee.
4.	 Enter	your	details,	such	as	your	name,	address,	website,	phone	and	email	preferences.

When	you	have	set	up	your	account,	you	can	upload	your	APK.	In	the	Google	Play	Developer	console	interface,	choose:

Production
Beta	Testing
Alpha	Testing

Then	you	can	browse	for	the	APK	to	upload,	or	drag	and	drop	it	to	the	console.	

You	need	to	satisfy	the	following	requirements	before	you	can	publish	your	app	to	the	public:

add	a	high-res	icon
add	a	feature	graphic	(in	case	your	app	is	selected	as	a	Featured	App	in	Google	Play)
add	2	non-Android	TV	screenshots
select	a	category
select	a	content	rating
target	at	least	one	country
enter	a	privacy	policy	URL
make	your	app	free	or	set	a	price	for	it
declare	if	your	app	contains	ads
add	a	required	content	rating

15.1:	Publish!

431

https://www.google.com/
https://developers.google.com/speed/webp/
http://developer.android.com/topic/performance/reduce-apk-size.html
https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/distribute/engage/beta.html
https://support.google.com/googleplay/android-developer/answer/3131213

This	list	might	seem	long,	but	the	Google	Play	developer	console	helps	you	figure	out	if	your	app	is	ready	to	launch.	Click
the	"Why	can't	I	publish?"	link	to	find	out	what	else	you	need	to	do	to	publish	your	app.

Run	pre-launch	reports
After	you	upload	your	APK,	you	can	run	pre-launch	reports	to	identify	crashes,	display	issues	and	security	issues.	During
the	pre-launch	check,	test	devices	automatically	launch	and	crawl	your	app	for	several	minutes.

The	crawl	performs	basic	actions	every	few	seconds	on	your	app,	such	as	typing,	tapping,	and	swiping.	The	pre-launch
tests	use	Firebase	Cloud	Test	Lab.

For	more	information	on	pre-launch	supports,	see	the	Google	Play	Help	center	article	Use	pre-launch	reports	to	identify
issues.

Review	criteria	for	publishing
Your	app	must	comply	with	Google	Play	policies,	which	ensure	that	all	apps	on	Google	Play	provide	a	safe	experience	for
everyone.

There	are	policies	governing

Restricted	content
Intellectual	property,	deception	and	spam
Privacy	and	security
Monetization	and	ads
Store	listing	and	promotion
Families

Learn	more	at	play.google.com/about/developer-content-policy/

Restricted	content

Google	Play	does	not	allow	apps	that	are	sexually-explicit,	hateful,	racist,	encourage	bullying	or	violence,	or	facilitate
gambling.

https://play.google.com/about/restricted-content/

Intellectual	property,	deception	and	spam

Google	Play	does	not	allow	apps	that	are	not	honest.	In	other	words,	they	pretend	to	be	other	apps	or	pretend	to	come
from	other	companies	or	impersonate	other	brands.	Google	Play	does	not	allow	apps	that	attempt	to	deceive	users.	Google
Play	does	not	allow	apps	that	spam	users	such	as	apps	that	send	users	unsolicited	messages.	Google	Play	does	not	allow
apps	that	are	duplicative	or	of	low-quality.

https://play.google.com/about/ip-deception-spam/

Privacy	and	security

Google	Play	requires	that	your	app	treats	users'	data	safely	and	keeps	private	user	information	secret.	If	your	app	accesses
or	transmits	private	data,	it	must	publish	a	statement	about	how	it	uses	users'	data.

Google	Play	does	not	allow	apps	that	damage	or	subversively	access	the	user's	device,	other	apps,	servers,	networks,	or
anything	that	it	should	not.	Basically,	your	app	should	not	interfere	with	anything	else,	or	cause	any	damage	to	anything,	or
try	to	access	anything	that	it	does	not	have	authorization	to	access.

Google	Play	does	not	allow	apps	that	steal	data,	secretly	monitor	or	harm	users,	or	are	otherwise	malicious.

15.1:	Publish!

432

https://play.google.com/apps/publish/

https://play.google.com/about/privacy-security/

Monetization	and	Ads

Google	Play	has	rules	regarding	accepting	payment	for	in-store	and	in-app	purchases.

Google	Play	does	not	allow	apps	that	contain	deceptive	or	disruptive	ads.

https://play.google.com/about/monetization-ads/

Store	Listing	and	Promotion
Publishers	must	not	attempt	to	promote	their	own	apps	unfairly.	For	example,	you	are	not	allowed	to	get	100,000	of	your
closest	friends	to	give	your	app	a	5	star	rating	so	that	it	appears	with	very	favorable	reviews.	Your	app's	icon,	title,
description	and	screenshot	must	all	fairly	represent	your	app,	and	not	make	any	exaggerated	or	misleading	claims.

In	other	words,	don't	cheat	to	get	a	better	Google	Play	rating	or	placement.

https://play.google.com/about/storelisting-promotional/

Submit	your	app	for	publishing
When	you	upload	your	app	for	production,	Google	checks	your	app.	Google	runs	both	automatic	and	manual	checking	on
your	app.

If	your	app	is	rejected,	fix	the	problem	and	try	again!

Final	summary
You	have	reached	the	end	of	this	course.	We	hope	you	have	enjoyed	the	journey	and	that	you	feel	ready	to	go	build	your
own	Android	apps.	We	look	forward	to	seeing	your	apps	in	the	Google	Play	store!

Learn	more

Preparing	your	app
Preparing	for	release	developer.android.com/studio/publish/preparing.html
Launch	checklist	developer.android.com/distribute/tools/launch-checklist.html
Core	app	quality	checklist	developer.android.com/distribute/essentials/quality/core.html
Handling	user	data	play.google.com/about/privacy-security/user-data/
App	filters	developer.android.com/google/play/filters.html
Min,	max,	and	target	API	levels	developer.android.com/guide/topics/manifest/uses-sdk-element.html
Product	flavors	developer.android.com/studio/build/index.html
Version	your	app	developer.android.com/studio/publish/versioning.html
Google	Play	filters	developer.android.com/google/play/filters.html
Reduce	app	size	developer.android.com/topic/performance/reduce-apk-size.htm
Sign	your	app	developer.android.com/studio/publish/app-signing.html

Google	Play	Developer	Console
Go	to	the	console:	play.google.com/apps/publish/
Dev	guide:	developer.android.com/distribute/googleplay/developer-console.html
Help	center:	support.google.com/googleplay/android-developer/#topic=3450769
Get	started	publishing	developer.android.com/distribute/googleplay/start.html

15.1:	Publish!

433

http://support.google.com/googleplay/android-developer/answer/7002270
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/restricted-content/
https://play.google.com/about/ip-deception-spam/

Firebase	Test	Lab:	firebase.google.com/docs/test-lab/

Alpha	and	Beta	testing

Dev	guide:	developer.android.com/distribute/engage/beta.html
Help	center:	support.google.com/googleplay/android-developer/answer/3131213

15.1:	Publish!

434

https://play.google.com/about/privacy-security/
https://play.google.com/about/monetization-ads/
https://play.google.com/about/storelisting-promotional/
https://developer.android.com/studio/publish/preparing.html
https://developer.android.com/distribute/tools/launch-checklist.html
https://developer.android.com/distribute/essentials/quality/core.html
https://play.google.com/about/privacy-security/user-data/
https://developer.android.com/google/play/filters.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/studio/build/index.html
https://developer.android.com/studio/publish/versioning.html
https://developer.android.com/google/play/filters.html
https://developer.android.com/topic/performance/reduce-apk-size.html
https://developer.android.com/studio/publish/app-signing.html
https://play.google.com/apps/publish/
https://developer.android.com/distribute/googleplay/developer-console.html
https://support.google.com/googleplay/android-developer/#topic=3450769
https://developer.android.com/distribute/googleplay/start.html
https://firebase.google.com/docs/test-lab/
https://developer.android.com/distribute/engage/beta.html
https://support.google.com/googleplay/android-developer/answer/3131213

	Table of Contents
	Introduction
	1.0: Introduction to Android
	1.1: Create Your First Android App
	1.2: Layouts, Views and Resources
	1.3: Text and Scrolling Views
	1.4: Resources to Help You Learn
	2.1: Understanding Activities and Intents
	2.2: The Activity Lifecycle and Managing State
	2.3: Activities and Implicit Intents
	3.1: The Android Studio Debugger
	3.2: Testing your App
	3.3: The Android Support Library
	4.1: User Input Controls
	4.2: Menus
	4.3: Screen Navigation
	4.4: RecyclerView
	5.1: Drawables, Styles, and Themes
	5.2: Material Design
	5.3: Providing Resources for Adaptive Layouts
	6.1: Testing the User Interface
	7.1: AsyncTask and AsyncTaskLoader
	7.2: Connect to the Internet
	7.3: Broadcast Receivers
	7.4: Services
	8.1: Notifications
	8.2: Scheduling Alarms
	8.3: Transferring Data Efficiently
	9.0: Storing Data
	9.1: Shared Preferences
	9.2: App Settings
	10.0: SQLite Primer
	10.1: SQLite Database
	11.1: Share Data Through Content Providers
	12.1: Loaders
	13.1: Permissions, Performance and Security
	14.1: Firebase and AdMob
	15.1: Publish!

